V
vienkeongam
[TEX]B4: msinx+(m+1)cosx=\frac{m}{cosx}[/TEX]
[TEX]Dk: cosx\neq 0[/TEX]
[TEX]pt\Leftrightarrow msinxcosx+(m+1)cos^2x=m[/TEX]
[TEX]\Leftrightarrow mtanx+m+1-m(1+tan^2x)=0 [/TEX]
[TEX]\Leftrightarrow mtan^2x-mtanx-1=0[/TEX]
[TEX]\rightarrow tanx_1+tanx_2=1 and tanx_1tanx_2=\frac{-1}{m}[/TEX]
[TEX]\rightarrow tan(x_1+x_2)=\frac{tanx_1+tanx_2}{1-tanx_1tanx_2}=\frac{m}{m+1}[/TEX]
[TEX]\Rightarrow cos2(x_1+x_2)=\frac{1+tan^2(x_1+x_2)}{1-tan^2(x_1+x_2)}[/TEX]
thay số vào tính
[TEX]B5: 2sin(3x+\frac{\pi }{4})=\sqrt{1+8sin2xcos^22x}[/TEX]
[TEX]dk: sin(3x+\frac{\pi }{4})\geq 0 (*)[/TEX]
khi đó [TEX]pt \Leftrightarrow 4sin^2(3x+\frac{\pi }{4})=1+8sin2xcos^22x[/TEX]
[TEX]\leftrightarrow 2\left [ 1-cos(6x-\frac{\pi }{2}) \right ]=1+8sin2xcos^22x[/TEX]
[TEX]\Leftrightarrow 2+6sin2x-8sin^32x=1+8sin2xcos^22x[/TEX]
[TEX]\leftrightarrow sin2x=\frac{1}{2}[/TEX]
[TEX] \leftrightarrow x=\frac{\pi }{12}+k\pi (1)[/TEX] hoặc[TEX] x=\frac{5\pi }{12}+k\pi (2)[/TEX] k thuộc Z
với [TEX]x=\frac{\pi }{12}+k\pi[/TEX] thay vào (*) ta đc
[TEX]sin(\frac{\pi }{4}+3k\pi +\frac{\pi }{4})\geq 0 \Leftrightarrow sin(\frac{\pi }{2}+3k\pi)\geq 0[/TEX]
[TEX]\leftrightarrow (-1)^ksin\frac{\pi }{2})=(-1)^k\geq 0 \leftrightarrow k=2m; m\in Z[/TEX]
Vậy (1)là nghiệm
với [TEX]x=\frac{5\pi }{12}+k\pi [/TEX]thay vào (*) ta đc:
[TEX]sin(3x+\frac{\pi }{4})=sin(\frac{3\pi }{2}+3k\pi )=(-1)^ksin\frac{3\pi }{2}=(-1)^k\geq 0[/TEX]
[TEX]\rightarrow k+1=2n (n\in Z)[/TEX]
[TEX]\rightarrow x=\frac{5\pi }{12}+(2n-1)\pi =\frac{-7\pi }{12}+2n\pi [/TEX] cũng là nghiệm
[TEX]Dk: cosx\neq 0[/TEX]
[TEX]pt\Leftrightarrow msinxcosx+(m+1)cos^2x=m[/TEX]
[TEX]\Leftrightarrow mtanx+m+1-m(1+tan^2x)=0 [/TEX]
[TEX]\Leftrightarrow mtan^2x-mtanx-1=0[/TEX]
[TEX]\rightarrow tanx_1+tanx_2=1 and tanx_1tanx_2=\frac{-1}{m}[/TEX]
[TEX]\rightarrow tan(x_1+x_2)=\frac{tanx_1+tanx_2}{1-tanx_1tanx_2}=\frac{m}{m+1}[/TEX]
[TEX]\Rightarrow cos2(x_1+x_2)=\frac{1+tan^2(x_1+x_2)}{1-tan^2(x_1+x_2)}[/TEX]
thay số vào tính
[TEX]B5: 2sin(3x+\frac{\pi }{4})=\sqrt{1+8sin2xcos^22x}[/TEX]
[TEX]dk: sin(3x+\frac{\pi }{4})\geq 0 (*)[/TEX]
khi đó [TEX]pt \Leftrightarrow 4sin^2(3x+\frac{\pi }{4})=1+8sin2xcos^22x[/TEX]
[TEX]\leftrightarrow 2\left [ 1-cos(6x-\frac{\pi }{2}) \right ]=1+8sin2xcos^22x[/TEX]
[TEX]\Leftrightarrow 2+6sin2x-8sin^32x=1+8sin2xcos^22x[/TEX]
[TEX]\leftrightarrow sin2x=\frac{1}{2}[/TEX]
[TEX] \leftrightarrow x=\frac{\pi }{12}+k\pi (1)[/TEX] hoặc[TEX] x=\frac{5\pi }{12}+k\pi (2)[/TEX] k thuộc Z
với [TEX]x=\frac{\pi }{12}+k\pi[/TEX] thay vào (*) ta đc
[TEX]sin(\frac{\pi }{4}+3k\pi +\frac{\pi }{4})\geq 0 \Leftrightarrow sin(\frac{\pi }{2}+3k\pi)\geq 0[/TEX]
[TEX]\leftrightarrow (-1)^ksin\frac{\pi }{2})=(-1)^k\geq 0 \leftrightarrow k=2m; m\in Z[/TEX]
Vậy (1)là nghiệm
với [TEX]x=\frac{5\pi }{12}+k\pi [/TEX]thay vào (*) ta đc:
[TEX]sin(3x+\frac{\pi }{4})=sin(\frac{3\pi }{2}+3k\pi )=(-1)^ksin\frac{3\pi }{2}=(-1)^k\geq 0[/TEX]
[TEX]\rightarrow k+1=2n (n\in Z)[/TEX]
[TEX]\rightarrow x=\frac{5\pi }{12}+(2n-1)\pi =\frac{-7\pi }{12}+2n\pi [/TEX] cũng là nghiệm