Chứng minh:
[tex]cos72^o=\frac {1}{2}\sqrt {4sin36^o-1}[/tex]
[tex]tg37^o30^'-(\sqrt {6}+\sqrt {3}-\sqrt {2})[/tex]là số nguyên
[TEX]sin 75 = sin 30.cos45+ cos 30. sin 45 = \frac{\sqrt{2}}{4} + \frac{\sqrt{6}}{4} [/TEX]
[TEX]t = tg37^o30^'[/TEX]
[TEX]\Rightarrow \frac{2t}{t^2+1} = \frac{\sqrt{2}}{4} + \frac{\sqrt{6}}{4} [/TEX]
[TEX]\Leftrightarrow t^2 -\frac{8}{\sqrt{2}+\sqrt{6}} t + 1 = 0 [/TEX]
[TEX]\huge \Delta' = \frac{16}{8+4\sqrt{3}} - 1 = \frac{2-\sqrt{3}}{2+\sqrt{3}}= (\frac{\sqrt{3}-1}{\sqrt{3}+1})^2 [/TEX]
[TEX]\Rightarrow t = \frac{2\sqrt{2}}{1+\sqrt{3}} \pm \frac{\sqrt{3}-1}{\sqrt{3}+1}[/TEX]
[TEX]\Leftrightarrow \left[ t= \frac{2\sqrt{2}-\sqrt{3}+1}{\sqrt{3}+1} \\ t = \frac{2\sqrt{2}+\sqrt{3}-1}{\sqrt{3}+1} \approx (1,303) (loai \ \ do \ \ t \le tan 45^o=1) [/TEX]
[TEX]\Rightarrow \huge tg37^o30^'-(\sqrt {6}+\sqrt {3}-\sqrt {2}) =\frac{2\sqrt{2}-\sqrt{3}+1}{\sqrt{3}+1} - \sqrt {6}-\sqrt {3}+\sqrt {2} = -2 [/TEX]