T
try_mybest
Câu 8
vì nhẩm đk 1 nghiệm là x=4 nên hướng làm là liên hợp
$$\sqrt[3]{3x+1}+\sqrt[3]{5-x}+\sqrt[3]{2x-9}-\sqrt[3]{4x-3}=0$$
\Leftrightarrow $$\sqrt[3]{3x+1}-\sqrt[3]{13}+\sqrt[3]{5-x}-1+\sqrt[3]{2x-9}+1-\sqrt[3]{4x-3}+\sqrt[3]{13}=0$$
\Leftrightarrow$$\dfrac{3(x-4)}{\sqrt[3]{(3x+1)^2}+\sqrt[3]{3x+1}.\sqrt[3]{13}+\sqrt[3]{169}}-\dfrac{x-4}{\sqrt[3]{(5-x)^2}+\sqrt[3]{5-x}+1}+\dfrac{2(x-4)}{\sqrt[3]{(2x-9)^2}-\sqrt[3]{2x-9}+1}-\dfrac{4(x-4)}{\sqrt[3]{(4x-3)^2}+\sqrt[3]{4x-3}.\sqrt[3]{13}+\sqrt[3]{169}}=0$$
\Leftrightarrowx=4 U $\dfrac{3}{\sqrt[3]{(3x+1)^2}+\sqrt[3]{3x+1}.\sqrt[3]{13}+\sqrt[3]{169}}-\dfrac{1}{\sqrt[3]{(5-x)^2}+\sqrt[3]{5-x}+1}+\dfrac{2}{\sqrt[3]{(2x-9)^2}-\sqrt[3]{2x-9}+1}-\dfrac{4}{\sqrt[3]{(4x-3)^2}+\sqrt[3]{4x-3}.\sqrt[3]{13}+\sqrt[3]{169}}=0$(vô nghiệm)
vì nhẩm đk 1 nghiệm là x=4 nên hướng làm là liên hợp
$$\sqrt[3]{3x+1}+\sqrt[3]{5-x}+\sqrt[3]{2x-9}-\sqrt[3]{4x-3}=0$$
\Leftrightarrow $$\sqrt[3]{3x+1}-\sqrt[3]{13}+\sqrt[3]{5-x}-1+\sqrt[3]{2x-9}+1-\sqrt[3]{4x-3}+\sqrt[3]{13}=0$$
\Leftrightarrow$$\dfrac{3(x-4)}{\sqrt[3]{(3x+1)^2}+\sqrt[3]{3x+1}.\sqrt[3]{13}+\sqrt[3]{169}}-\dfrac{x-4}{\sqrt[3]{(5-x)^2}+\sqrt[3]{5-x}+1}+\dfrac{2(x-4)}{\sqrt[3]{(2x-9)^2}-\sqrt[3]{2x-9}+1}-\dfrac{4(x-4)}{\sqrt[3]{(4x-3)^2}+\sqrt[3]{4x-3}.\sqrt[3]{13}+\sqrt[3]{169}}=0$$
\Leftrightarrowx=4 U $\dfrac{3}{\sqrt[3]{(3x+1)^2}+\sqrt[3]{3x+1}.\sqrt[3]{13}+\sqrt[3]{169}}-\dfrac{1}{\sqrt[3]{(5-x)^2}+\sqrt[3]{5-x}+1}+\dfrac{2}{\sqrt[3]{(2x-9)^2}-\sqrt[3]{2x-9}+1}-\dfrac{4}{\sqrt[3]{(4x-3)^2}+\sqrt[3]{4x-3}.\sqrt[3]{13}+\sqrt[3]{169}}=0$(vô nghiệm)
Last edited by a moderator: