Bài 3:
Phân tích : Do vế phải xuất hiện yz và trong quá trình đánh giá ta cần sử dụng đến giả thiết [tex]x^2+y^2+z^2=2[/tex] ,nên ta nghĩ đến việc áp dụng bất đẳng thức Bunhiacopxki cho 2 bộ số (1;x) và (1;y+z)
Lời giải
Áp dụng bất đẳng thức Bunhiacopxki ta có
[tex]x+y+z=1.x+1.(y+z)\leq \sqrt{2(x^2+(y+z)^2)}=\sqrt{2(2+2yz)}=2\sqrt{1+yz}[/tex]
Bài 4 :
Phân tích
Vì giải thiết cho a+b+c=3 nên ta cần đánh giá vế trái qua tổng a+b+c.Do đó ta cần một đánh giá có dạng [tex]a^2+3b^2\geq (ma+nb)^2[/tex] và đẳng thức xảy ra tại a=b=1
Diều này giúp ta nghĩ đến việc áp dụng bất đẳng thức Bunhiacopxki cho 2 bộ số [tex](x;y);(a,\sqrt{3}b)[/tex] (x,y) tìm sau
Ta có
[tex](x^2+y^2)(a^2+3b^2)\geq (xa+y\sqrt{3}b)^2[/tex]
Đẳng thức xảy ra khi [tex]\frac{x}{a}=\frac{y}{\sqrt{3}b}[/tex] và a=b=1 nên ta có [tex]x=\frac{y}{\sqrt{3}}[/tex] chọn x=1 ,[tex]y=\sqrt{3}[/tex]
Lời giải
Áp dụng bất đẳng thức Bunhiacopxki cho 2 bộ số [tex](1;\sqrt{3}),(a,\sqrt{3}b)[/tex] ta có
[tex](1^2+(\sqrt{3})^2)(a^2+(\sqrt{3}b)^2)\geq (a+3b)^2\\\Rightarrow \sqrt{a^2+3b^2}\geq \frac{a+3b}{2}[/tex]
CMTT suy ra đpcm .
Dấu = xảy ra khi a=b=c=1
Bài 5: (tương tự):Cho các số thực dương a,b,c thỏa mãn a+b+c=3 .cmr [tex]\sqrt{2a^2+\frac{7}{b^2}}+\sqrt{2b^2+\frac{7}{c^2}}+\sqrt{2c^2+\frac{7}{a^2}}\geq 9[/tex]
Bài 6 : Cho các số thực dương a,b,c .cmr [tex]\frac{a}{a+2b}+\frac{b}{b+2c}+\frac{c}{c+2a}\geq 1[/tex]
Tích cực lên đi các bạn ...bởi biết đâu ta sẽ giúp được một ai đó trong tương lai