V
vodichhocmai
Cho các số thực dương a,b,c . CMR :
[TEX]\frac{1}{a} + \frac{1}{b} + \frac{1}{c} \geq \frac{b+c}{a^2+bc} + \frac{c+a}{b^2+ca} + \frac{a+b}{c^2+ab} [/TEX]
[TEX]\left{x=\frac{1}{a}\\y=\frac{1}{b}\\z=\frac{1}{c}[/TEX]
[TEX](bdt)\Leftrightarrow \sum_{cyclic}x\ge \sum_{cyclic}\frac{\frac{1}{y} +\frac{1}{z}}{\frac{1}{x^2}+\frac{1}{yz}}[/TEX]
[TEX](bdt)\Leftrightarrow \sum_{cyclic}x\ge \sum_{cyclic}\frac{x^2(y+z)}{x^2+yz}[/TEX]
[TEX]\Leftrightarrow \sum_{cyclic}\(\frac{x^3+xyz-x^2y-x^2z}{x^2+yz}\)\ge 0 [/TEX]
[TEX]\Leftrightarrow \sum_{cyclic}x\(\frac{(x-y)(x-z)}{x^2+yz}\)\ge 0 [/TEX]
Không dùng [TEX]SChur=po \ chi[/TEX]