Topic dành cho những bạn nào 94 năm nay thi đại học!!!!!!

Status
Không mở trả lời sau này.
L

li94

Mấy câu trong đề học kì sáng nay.


Cho [TEX](C) \ \ \ y = \frac{x-1}{x+1}[/TEX]

a, Tìm [TEX]M \in (C)[/TEX] sao cho tiếp tuyến tại M tạo với [TEX] d : \ \ y = x+5 [/TEX]1 góc [TEX] \alpha [/TEX] với [TEX] tan\alpha = \frac{1}3 [/TEX]

b, Tìm 2 điểm[TEX] A , B \in (C) [/TEX]sao cho[TEX] AB//d' : \ y = -2x+1[/TEX] và[TEX] AB = 2.\sqrt{5}[/TEX]


Tính nguyên hàm

[TEX]\int_{}^{}\frac{dx}{(x+1)(2x-1)}[/TEX]
 
Last edited by a moderator:
T

tuyn

Giải pt và bpt
[TEX]1)5^x+\frac{2.5^x}{\sqrt{5^{2x}-4}}>3\sqrt{5}[/TEX]
ĐK: [TEX]x > log_52[/TEX]
[TEX]PT \Leftrightarrow 5^{2x}+ \frac{4.5^{2x}}{5^{2x}-4}+ \frac{5.5^{2x}}{ \sqrt{5^{2x}-4}}=45[/TEX]
[TEX]\Leftrightarrow 2. \frac{5^{4x}}{5^{2x}-4}+5. \frac{5^{2x}}{ \sqrt{5^{2x}-4}}-45=0[/TEX]
Đặt [TEX]t= \frac{5^{2x}}{ \sqrt{5^{2x}-4}}[/TEX] \Rightarrow giải OK

[TEX]2)log_{\frac{1}{5}}(\frac{x^2+1}{2x^2-2x-2})\geq -7x^2+14x+21[/TEX]
ĐK: [TEX]x^2-x-1 > 0[/TEX]
[TEX]BPT \Leftrightarrow log_5{ \frac{x^2+1}{2x^2-2x-2}} \leq 7x^2-14x-21[/TEX]
[TEX] \Leftrightarrow log_5{ \frac{7x^2+7}{14x^2-14x-14}} \leq (14x^2-14x-14)-(7x^2+7)[/TEX]
[TEX]\Leftrightarrow log_5(7x^2+7)+(7x^2+7) \leq log_5(14x^2-14x-14)+(14x^2-14x-14)[/TEX]
Xét hàm số [TEX]f(t)=log_5t+t[/TEX]là hàm số đồng biến t > 0
[TEX]PT \Leftrightarrow f(7x^2+7) \leq f(14x^2-14x-14) \Leftrightarrow 7x^2+7 \leq 14x^2-14x-14 \Leftrightarrow ....[/TEX]
 
Last edited by a moderator:
P

passingby



Cho [TEX](C) \ \ \ y = \frac{x-1}{x+1}[/TEX]

a, Tìm [TEX]M \in (C)[/TEX] sao cho tiếp tuyến tại M tạo với [TEX] d : \ \ y = x+5 [/TEX]1 góc [TEX] \alpha [/TEX] với [TEX] tan\alpha = \frac{1}3 [/TEX]

Đk :[TEX] xo[/TEX] khác -1 (chả bit type b-( )
Gọi [TEX]M(xo,yo)[/TEX] là điểm cần tìm.
Ta có [TEX]y'=2/(xo+1)^2[/TEX]
Áp dụng [TEX]tan = (k1-k2)/(1+k1k2)[/TEX] (ố ồ,công thức đúng ko nhỉ :-o )
Theo bài ra [TEX]tan = 1/3[/TEX]
<=>[TEX] (2/(xo +1)^2 -1 )/ (1+2/(xo+1)^2) = 1/3 [/TEX]
Giải ptr ra đc nghiệm
<=>[TEX]xo = 0[/TEX] hoặc[TEX] xo=-2[/TEX]
\Rightarrow có 2 điểm [TEX]M[/TEX] thỏa mãn : [TEX]M1 (0;-1)[/TEX] ; [TEX]M2(-2;3)[/TEX] :-??
P/S: Chưa kịp review :-??
 
Last edited by a moderator:
N

niemkieuloveahbu

Bạn nào giúp mìng bài này với :D
Tính góc của tam giác ABC biết : sin^2 A + sin^2 B + sin^2 C = 9/4
Cảm ơn nhiều nhiều!!

[TEX]sin^2 A + sin^2 B + sin^2 C =\frac{9}{4}\\\Leftrightarrow 1-cos2A+1-cos2B+2(1-cos^2C)=\frac{9}{2}\\\Leftrightarrow 2cos^2 C+2cos(A+B)cos(A-B)+\frac{1}{2}=0\\\Leftrightarrow 2cos^2C-2cosCcos(A-B)+\frac{1}{2}=0\\\Leftrightarrow 2[cosC-cos(A-B)]^2+\frac{1}{2}sin^2(A-C)=0\\ \Leftrightarrow \{cosC=cos(A-B)\\sin(A-C)=0[/TEX]
Giải điều kiện này được [TEX]A=B=C=\frac{\pi}{3}[/TEX]
 
H

hoanghondo94

Mọi người cùng giải trí với một câu ứng dụng của tích phân nhé....hehe:khi (79):

1.Tìm [TEX]m[/TEX] để diện tích hình phẳng giới hạn bởi các đường thẳng sau đạt GTLN

[TEX]y=\frac{x^2+2mx+3m^2}{m^4+1}[/TEX] và [TEX]y=\frac{m^2-mx}{m^4+1}[/TEX]


2. Cho [TEX]P:y=x^2[/TEX].Gọi [TEX]\Delta [/TEX] là tiếp tuyến với P tại [TEX]x=-1[/TEX].Lập phương trình tiếp tuyến [TEX]d[/TEX] của P sao cho [TEX]S[/TEX]
là hình phẳng giới hạn bởi [TEX]\Delta ;d ; P [/TEX] ;và [TEX] S=\frac{9}{4}[/TEX]

Cũng không phải dễ ,:M039: dễ nhầm ..keke:D
 
L

li94

Đk :[TEX] xo[/TEX] khác -1 (chả bit type b-( )
Gọi [TEX]M(xo,yo)[/TEX] là điểm cần tìm.
Ta có [TEX]y'=2/(xo+1)^2[/TEX]
Áp dụng [TEX]tan = (k1-k2)/(1+k1k2)[/TEX] (ố ồ,công thức đúng ko nhỉ :-o )
Theo bài ra [TEX]tan = 1/3[/TEX]
<=>[TEX] (2/(xo +1)^2 -1 )/ (1+2/(xo+1)^2) = 1/3 [/TEX]
Giải ptr ra đc nghiệm
<=>[TEX]xo = 0[/TEX] hoặc[TEX] xo=-2[/TEX]
\Rightarrow có 2 điểm [TEX]M[/TEX] thỏa mãn : [TEX]M1 (0;-1)[/TEX] ; [TEX]M2(-2;3)[/TEX] :-??
P/S: Chưa kịp review :-??


Công thức tan , có trị tuyệt đối trên tử ko nhỉ , chứ biết cái nào là k1 , k2 đâu nhỉ :-?

Vậy nên có 4 điểm.

Còn cái câu c , dành cả 1 tiết làm bài khảo sát mà ko xong.
 
T

thuydayhaha

các bạn giải thích cho mình bài này với. hướng dẫn kĩ cho mình các bước nha. mình ko hiểu bài này lắm:(:(:(:(
14xz8mx.jpg
 
R

riely_marion19

Biến đổi cuối cùng được:[TEX]y=x^{4}-2x^{2}+1[/TEX].Khảo sát đến đây là 0k nhé!
Ta có:[TEX]y'=4x^{3}-4x[/TEX]
Gọi [TEX]M(x_{0},0)[/TEX] là điểm cần tìm và k là hệ số góc của đường thẳng d đi qua M,ta có:
Phương trình đường thẳng d đi qua M có dạng:
[TEX]y=k(x-x_{0})[/TEX]
Đường thẳng d tiếp xúc với đồ thị hàm số (C) khi và chỉ khi:
[TEX]\left{\begin{x^{4}-2x^{2}+1=k(x-x_{0})(1)}\\{k=4x^{3}-4x(2)[/TEX]
Thế k từ (2) vào (1) ta được phương trình:
[TEX]x^{4}-2x^{2}+1=(4x^{3}-4x)(x-x_{0})[/TEX]
Nhân tung ra và nhóm lại cuối cùng phương trình trở thành:
[TEX](x-1)(x+1)(3x^{2}-4x_{0}x+1)=0[/TEX]
Đặt [TEX]g(x)=3x^{2}-4x_{0}x+1[/TEX]
Nhận xét:
Dễ thấy hệ số góc của tiếp tuyến tại 2 điểm có hoành độ (1,0) và (-1,0) bằng nhau và bằng 0 nên 2 đường tiếp tuyến này trùng nhau.
Do đó để từ M kẻ được 3 tiếp tuyến đến đồ thị hàm số (C) khi và chỉ khi:
Phương trình g(x)=0 có 2 nghiệm phân biệt khác 1 và -1.

[TEX]\Leftrightarrow \left{\begin{4x_{0}^{2}-3>0}\\{g(1)\neq 0}\\{g(-1)\neq 0[/TEX]

[TEX]\Leftrightarrow \left{\begin{x_{0}\neq 1}\\{x_{0}\neq -1}\\{\left[\begin{x_{0}<\frac{-\sqrt{3}}{2}}\\{x_{0}>\frac{\sqrt{3}}{2}[/TEX]
Vậy với các điểm M thuộc trục hoành có hoành độ thoả mãn:
[TEX]\left{\begin{x_{0}\neq 1}\\{x_{0}\neq -1}\\{\left[\begin{x_{0}<\frac{-\sqrt{3}}{2}}\\{x_{0}>\frac{\sqrt{3}}{2}[/TEX]
Thì từ đó ta kẻ được 3 tiếp tuyến đến (C)

hơ hơ!
quả là sở trường của cậu.... tớ bị nhằm cái này rùi :-SS:-SS:-SS:-SS:-SS
 
K

kieumai0610

Một bài hàm số để góp vui với cả nhà nè !
Cho hàm số y=2x\(x-1) (C)
Tìm trên đồ thị (C ) 2 điểm B,C thuộc hai nhánh sao cho tam giác ABCvuoong cân tại đỉnh A với A(2;0) .
Bạn xem lại đề nhé!Đề đâu có cho điểm C để tính bây giờ!Hjhj
 
Last edited by a moderator:
R

riely_marion19

:khi (4)::khi (4)::khi (4)::khi (4)::khi (4)::khi (4)::khi (4)::khi (4):
một vài bài tập ôn đh nhé
bài 1:
dành cho Bình nhà ta nhé ;) [TEX]vip^n[/TEX]
cho hàm số[TEX] y=f(x)=x^3-3x+1[/TEX] có đồ thị (T)
a. A, B, C lần lượt là 3 điểm phân biệt thẳng hàng thuộc đồ thị (T). các tiếp tuyến của (T) tại A, B, C lần lượt cắt (T) tại các giao điểm thứ 2: A', B', C'. chứng minh rằng ba điểm A', B', C' cũng thẳng hàng.
b. tìm số nghiệm của phương trình f[f(x)]=0
bài 2:
dành tặng hoanghondo94 nhá :p Vip!(xài giống thbinhpro;)) )
[TEX]\oint_{0}^{2}(x-2)\sqrt[]{\frac{x}{4-x}}dx[/TEX]
bài 3:
gởi đồng nghiệp kidz.c :p Vip!
[TEX]\left{x^2+y^2=\frac{1}{5} \\ 4x^2+3x-\frac{57}{25}=-y(3x+1)[/TEX]
sau đây là dành cho những đọc giả thân êu của topic này nhá :)
bài 4:
[TEX]\left{x^3+2y^2=x^2y+2xy \\ 2\sqrt[]{x^2-2y-1}+\sqrt[3]{y^3-14}=x-2[/TEX]
bài 5:
[TEX]\left{x^3+7y=(x+y)^2+x^2y+7x+4 \\ 3x^2+y^2+8y+4=8x[/TEX]
bài 6:
[TEX]\left{x^3-y^3=35 \\ 2x^2+3y^2=4x-9y[/TEX]
chúc mọi người học tốt !!!!:khi (91)::khi (91)::khi (91)::khi (91)::khi (91)::khi (91)::khi (91)::khi (91):
 
Last edited by a moderator:
T

tbinhpro

câu 2: tìm m thực để phương trình sau có nghiệm thực trong đoạn [TEX]\frac{5}{2}[/TEX] đến 4
[TEX](m-1).\log^{2}_{\frac{1}{2}}(x-2)^2 +4(m-5)\log_{\frac{1}{2}}\frac{1}{x-2}+4m-4=0[/TEX]
Điều kiện x>2.
Với điều kiện trên ta có:
[TEX]PT\Leftrightarrow (m-1)\log_{\frac{1}{2}}^{2}(x-2)-(m-5)\log_{\frac{1}{2}}(x-2)+(m-1)=0[/TEX]
Đặt [TEX]t=\log_{\frac{1}{2}}(x-2)[/TEX] thì đề bài chuyển thành tìm m để phương trình:
[TEX](m-1)t^{2}-(m-5)t+(m-1)[/TEX]
Có nghiệm t thuộc [TEX][-1,1][/TEX].
+Với m=1 thì thay vào phương trình được x=0 thuộc [-1,1].Thoả mãn đề bài.
+Với [TEX]m\neq 1[/TEX] ta có phương trình trở thành:
[TEX]t^{2}=\frac{m-5}{m-2}t+1\Leftrightarrow t^{2}+1=\frac{m-5}{m-2}t[/TEX]
Để phương trình có nghiệm thuộc [-1,1] khi và chỉ khi:
[TEX]\left[\begin{\frac{m-5}{m-2}\geq 2}\\{\frac{m-5}{m-2}\leq -2[/TEX]
Xét lần lượt với m>1 và m<1 cuối cùng ta được:
[TEX]\left[\begin{1<m\leq \frac{7}{3}}\\{-3\leq m<1[/TEX]
Vậy kết luận với các giá trị m thoả mãn [TEX]{-3}\leq m\leq \frac{7}{3}[/TEX] thì phương trình đã cho có nghiệm thực.:p:p
 
Last edited by a moderator:
T

tbinhpro

câu 6: cho hình chóp S.ABC có đường cao SA=a, đáy ABC là tam giác vuông cân AB=BC=a. gọi B' là trung điểm của SB, C' là chân đường cao hạ từ A của tam giác SAC
a. tính thể tích khối chóp S.ABC
b. chứng minh SC vuông góc với mặt phẳng (AB'C')
c. tính thể tích khối chóp S.AB'C'
d. tính thể tích khối cầu ngoại tiếp hình chóp S.ABC
e.tính diện tích xung quanh và thể tích khối trụ có đường tròn đáy ngoại tiếp tam giác ABC và đường sinh SA
f. tính diện tích xung quanh và thể tích khối nón tròn xoay khi quay tam giác SAC'
quanh trục SC
chúc các bạn làm bài tốt:khi (196)::khi (196)::khi (196)::khi (196)::khi (196)::khi (196)::khi (196)::khi (196)::khi (196)::khi (196)::khi (196):
Câu 6 chỉ dài chứ không khó.Mình chỉ nếu các kết quả tính toán thôi nhé!Hợi ngại gõ tex bài này vì dài quá.
1)[TEX]V_{SABC}=\frac{a^{3}}{6}[/TEX]
3)[TEX]V_{SAB'C'}=\frac{a^{3}}{36}[/TEX]
4)[TEX]V=\frac{\sqrt{3}}{2}\pi a^{3}[/TEX]
5)[TEX]S_{xq}=\pi \sqrt{2}a^{2}[/TEX]
[TEX]V=\frac{\pi a^{3}}{2}[/TEX]
6)[TEX]S_{xq}=\frac{\sqrt{3}\pi a^{2}}{3}[/TEX]
[TEX]V=\frac{\sqrt{6}\pi a^{3}}{27}[/TEX]
Ai làm rồi so kết quả nhé!
 
T

tbinhpro

Giải pt và bpt
[TEX]3)3^x=1+2x+2log_3(4x+1)[/TEX]
[TEX]PT\Leftrightarrow 3^{x}=2\log_{3}(4x+1)-2x-1=0[/TEX]
Dễ thấy phương trình có 2 nghiệm x=0 và x=2.
Ta có:
[TEX]f'(x)=3^{x}.ln3-2-\frac{8}{(4x+1).ln3}[/TEX]
[TEX]f^{''}(x)=3^{x}.ln^{2}3+\frac{32}{(4x+1)^{2}ln3} >0[/TEX]
Suy ra phương trình f'(x)=0 có nhiều nhất 1 nghiệm.
Suy ra phương trình đã cho có nhiều nhất 2 nghiệm.
Vậy phương trình đã cho có 2 nghiệm duy nhất là x=0 và x=2
 
K

kieumai0610

VIP_BÌNH ơi ! Tặng Bình mấy bài làm chơi chơi nhé :khi (14):
Làm xong Mai trở đi chơi ! :khi (98):
Rất ngon mà không sợ nóng nè :khi (57):
Bài 1: cho h\s y=(2x-3)\(1-x) (C)
Viết PTTT tại m thuộc (C)
Biết tt đó cắt tiệm cận đứng và tiệm cận ngang tại A,B sao cho cosABI=4\căn17 ,với I là giao của hai đường tiệm cận
Bài 2: cho h\s [TEX] y=x^3 -3x+1[/TEX]
Tìm m để đt :d:y=mx +m+3 cắt đồ thị tại M(-1;3),N.P sao cho tt tại N,P vuông góc với nhau
Bải:3 Cho h\s x^3\3-mx^2-x+m+2\3
Tìm m dể đồ thi h\s cất trục hoành tại 3 điểm phân biệt có tổng bình phương các hoành độ lớn hơn 15
Chúc bình làm bài vui vẻ nha nha ! hjhj :khi (24)::khi (24)::khi (24)::khi (24)::khi (24)::khi (24)::khi (24)::khi (24)::khi (24):
Tuần này mình thi học kì nhưng mình sẽ cố gắng làm xong trong ngay mai cho bạn!:D :p
Bài 1 hàm số đâu có tiệm cận xiên đâu bạn!
 
Last edited by a moderator:
T

tbinhpro

VIP_BÌNH ơi ! Tặng Bình mấy bài làm chơi chơi nhé :khi (14):
Làm xong Mai trở đi chơi ! :khi (98):
Rất ngon mà không sợ nóng nè :khi (57):
Bải: Cho h\s x^3\3-mx^2-x+m+2\3
Tìm m để đồ thi h\s cắt trục hoành tại 3 điểm phân biệt có tổng bình phương các hoành độ lớn hơn 15
Chúc bình làm bài vui vẻ nha nha ! hjhj :khi (24)::khi (24)::khi (24)::khi (24)::khi (24)::khi (24)::khi (24)::khi (24)::khi (24):
Ăn liền bài này cho nóng lun cả thể nhé!
Ta có:Xét phương trình hoành độ giao điểm giữa (C) và trục hoành:
[TEX]\frac{x^3}{3}-mx^2 -x+m+\frac{2}{3}=0[/TEX]
[TEX]\Leftrightarrow (x-1)[\frac{x^2}{3}+(\frac{1}{3}-m)-(\frac{2}{3}+m)]=0[/TEX]
[TEX]\Leftrightarrow (x-1)[x^2 +(1-3m)x-2+3m]=0[/TEX]
[TEX]\Leftrightarrow (x-1)(x-1)(x+2-3m)=0[/TEX]

Để tổng bình phương các hoành độ đó lơn hơn 15 khi và chỉ khi:
[TEX](3m-2)^{2}+1+1>15 \Leftrightarrow (3m-2)^{2}>12[/tex]
[TEX]\left[\begin{m>\frac{2+2\sqrt{3}}{3}}\\{m<\frac{2-2\sqrt{3}}{3}[/TEX]
 
Last edited by a moderator:
Status
Không mở trả lời sau này.
Top Bottom