T
tuyn
Ta có:Giải phương trình lượng giác sau:
[TEX]\frac{{2 + {{\cos }^4}x}}{{1 + {{\sin }^6}x}} = {\sin ^5}x + {\cos ^5}x (1)[/TEX]
[TEX]sin^5x+cos^5x \leq sin^2x+cos^2x=1 \Rightarrow VP (1) \leq 1[/TEX]
Lại có [TEX]2+cos^4x=1+sin^2x+cos^2x+cos^4x=1+sin^2x+cos^2x(1+cos^2x) \geq 1+sin^2x \geq 1+sin^6x[/TEX]
[TEX]\Rightarrow VT (1) \geq 1[/TEX]
Do vậy [TEX]PT (1) \Leftrightarrow \left{\begin{sin^5x=sin^2x}\\{cos^5x=cos^2x}\\{cosx=0}\\{sin^2x=sin^6x}[/TEX]
[TEX]\Leftrightarrow sinx=1 \Leftrightarrow x= \frac{ \pi}{2}+k2 \pi[/TEX]
Last edited by a moderator: