E
emtraj.no1
bài 5
$\begin{array}{l}
\sqrt 2 \sin \left( {x + \dfrac{\pi }{4}} \right) = 2010m\\
\sqrt 2 \sin \left( {x + \dfrac{\pi }{4}} \right) = \left[ {\sin \left( x \right) + \cos \left( x \right)} \right]\left( {cong - thuc - sgk} \right)\\
\Longrightarrow \sin \left( x \right) + \cos \left( x \right) = 2010m\\
\left| {\sin \left( x \right) + \cos \left( x \right)} \right| \le \sqrt {{1^2} + {1^2}} \sqrt {{{\sin }^2}\left( x \right) + {{\cos }^2}\left( x \right)} = \sqrt 2 \left( {bunhiacopsky} \right)\\
\Longrightarrow - \sqrt 2 \le \sin \left( x \right) + \cos \left( x \right) \le \sqrt 2 \Longleftrightarrow - \sqrt 2 \le 2010m \le \sqrt 2 \left( 1 \right)\\
x \in \left( {0;\dfrac{\pi }{2}} \right) \Longrightarrow \left\{ \begin{array}{l}
0 < \sin \left( x \right) < 1\\
0 < \cos \left( x \right) < 1
\end{array} \right.\\
\Longrightarrow 0 < \sin \left( x \right) + \cos \left( x \right) < 2\\
\Longleftrightarrow 0 < 2010m < 2\left( 2 \right)\\
\left( 1 \right),\left( 2 \right) \Longrightarrow 0 < 2010m \le \sqrt 2 \Longrightarrow 0 < m \le \dfrac{{\sqrt 2 }}{{2010}}
\end{array}$
$\begin{array}{l}
\sqrt 2 \sin \left( {x + \dfrac{\pi }{4}} \right) = 2010m\\
\sqrt 2 \sin \left( {x + \dfrac{\pi }{4}} \right) = \left[ {\sin \left( x \right) + \cos \left( x \right)} \right]\left( {cong - thuc - sgk} \right)\\
\Longrightarrow \sin \left( x \right) + \cos \left( x \right) = 2010m\\
\left| {\sin \left( x \right) + \cos \left( x \right)} \right| \le \sqrt {{1^2} + {1^2}} \sqrt {{{\sin }^2}\left( x \right) + {{\cos }^2}\left( x \right)} = \sqrt 2 \left( {bunhiacopsky} \right)\\
\Longrightarrow - \sqrt 2 \le \sin \left( x \right) + \cos \left( x \right) \le \sqrt 2 \Longleftrightarrow - \sqrt 2 \le 2010m \le \sqrt 2 \left( 1 \right)\\
x \in \left( {0;\dfrac{\pi }{2}} \right) \Longrightarrow \left\{ \begin{array}{l}
0 < \sin \left( x \right) < 1\\
0 < \cos \left( x \right) < 1
\end{array} \right.\\
\Longrightarrow 0 < \sin \left( x \right) + \cos \left( x \right) < 2\\
\Longleftrightarrow 0 < 2010m < 2\left( 2 \right)\\
\left( 1 \right),\left( 2 \right) \Longrightarrow 0 < 2010m \le \sqrt 2 \Longrightarrow 0 < m \le \dfrac{{\sqrt 2 }}{{2010}}
\end{array}$