Toán 10 [Toán 10]Bất phương trình

Q

quyenuy0241

ok nhanh đấy ( giờ sẽ khó hơn một ít )

[TEX] 1)\sqrt[4]{(4-x)(x-2)} +\sqrt[4]{4-x} +\sqrt[4]{x-2} +6x\sqrt{3x}\leq x^3+30[/TEX]

DKXD: [tex]2 \le x \le 4 [/tex]

Áp dụng BDT sau

[tex]\frac{(a+b)^4}{8} \le (a^4+b^4) [/tex]

Suy ra : [TEX] \sqrt[4]{4-x}+\sqrt[4]{x-2} \le 2[/TEX]

Áp dụng tiếp BDT Cauchy: [TEX]\sqrt[4]{(4-x)(x-2)} \le 1[/TEX]

[tex]6x\sqrt{3x}=2.3\sqrt{3}.\sqrt{x^3} \le 27+x^3 [/tex]

Cộng các BDT trên ta được [tex]Vt \le VP[/tex]

Vậy nghiệm của BPT là [tex]S=[2,,4] [/tex]
 
Last edited by a moderator:
T

tell_me_goobye

giải pt

[TEX] 729x^4 +8\sqrt{1-x^2} =36[/TEX]

giải bpt

[TEX] (12-x)\sqrt{\frac{12-x}{x-2}} +(x-2)\sqrt{\frac{x-2}{12-x}} <\frac{82}{3}[/TEX]
 
T

tiger3323551

[tex]729x^4+8sqrt{1-x^2}=36[/tex]
[tex]t=sqrt{1-x^2};t \ge 0=>x^4=(1-t^2)^2[/tex]
pt[tex]<=>729t^4-1458t^2+8t+693=0[/tex]
[tex]<=>(81t^2-18t-77)(9t^2+2t-9)=0[/tex]
 
Last edited by a moderator:
D

duynhan1

giải bpt

[TEX] (12-x)\sqrt{\frac{12-x}{x-2}} +(x-2)\sqrt{\frac{x-2}{12-x}} <\frac{82}{3}(1)[/TEX]

[TEX]DK: 2 < x < 12[/TEX]
[TEX]a=12-x \\ b= x-2[/TEX]

[TEX]\Rightarrow a+b=10\\ a > 0, b > 0[/TEX]

[TEX](1) \Leftrightarrow \sqrt{\frac{a^3}{b}} + \sqrt{\frac{b^3}{a}} \leq \frac{82}{3} [/TEX]

[TEX]\Leftrightarrow 3(a^2 + b^2) \leq 82\sqrt{ab}[/TEX]

[TEX]\Leftrightarrow 300 - 6ab - 82 \sqrt{ab} \leq 0[/TEX]

[TEX]\Leftrightarrow 6ab + 82 \sqrt{ab} -300 \leq 0[/TEX]
 
Last edited by a moderator:
T

tell_me_goobye

1)
[TEX] 5\sqrt{x} + \frac{5}{2\sqrt{x}} < 2x+\frac{1}{2x} +4 [/TEX]
2)
[TEX] \sqrt{7x+7} + \sqrt{7x-6} +2\sqrt{49x^2+7x-42} \leq 181 -14x[/TEX]
 
D

duynhan1

1)
[TEX] 5\sqrt{x} + \frac{5}{2\sqrt{x}} < 2x+\frac{1}{2x} +4 [/TEX] /:)
2)
[TEX] \sqrt{7x+7} + \sqrt{7x-6} +2\sqrt{49x^2+7x-42} \leq 181 -14x[/TEX](*)

1.
[TEX]t = \sqrt{x} + \frac{1}{2\sqrt{x}}[/TEX]
[TEX]t^2 = x + \frac{1}{4x} + 1[/TEX]
/:) [TEX]\Leftrightarrow 5t < 2t^2 -2 + 4[/TEX]
2.
[TEX]t =\sqrt{7x+7} + \sqrt{7x-6} [/TEX]
[TEX]t^2 = 14 x + 1 + 2\sqrt{49x^2+7x-42} [/TEX]

(*) [TEX]\Leftrightarrow t^2 + t - 14x - 1 \leq 181 - 14x [/TEX]
[TEX]\Leftrightarrow t^2 + t - 182 \leq 0 [/TEX]
 
Last edited by a moderator:
T

tell_me_goobye

tiếp đê

1)
[TEX] \frac{1}{x^2} + \frac{x^2}{1-x^2} + \frac{5}{2}(\frac{\sqrt{1-x^2}}{x}+\frac{x}{\sqrt{1-x^2}} +2 >0[/TEX]
2)
[TEX] \frac{1}{1-x^2} > \frac{3x}{\sqrt{1-x^2}} -1[/TEX]
3)
[TEX] 4(x+1)^2 \geq (2x+10)(1-\sqrt{3+2x})^2[/TEX]
4)
(ĐỀ ĐẠI HỌC KHỐI A )
[TEX] \frac{\sqrt{2(x^2-16)}}{\sqrt{x-3}}+\sqrt{x-3} > \frac{7-x}{\sqrt{x-3}}[/TEX]
 
P

puu

tiếp đê

1)
[TEX] \frac{1}{x^2} + \frac{x^2}{1-x^2} + \frac{5}{2}(\frac{\sqrt{1-x^2}}{x}+\frac{x}{\sqrt{1-x^2}} +2 >0[/TEX]
2)
[TEX] \frac{1}{1-x^2} > \frac{3x}{\sqrt{1-x^2}} -1[/TEX]
3)
[TEX] 4(x+1)^2 \geq (2x+10)(1-\sqrt{3+2x})^2[/TEX]
4)
(ĐỀ ĐẠI HỌC KHỐI A )
[TEX] \frac{\sqrt{2(x^2-16)}}{\sqrt{x-3}}+\sqrt{x-3} > \frac{7-x}{\sqrt{x-3}}[/TEX]
4; đk [TEX]x \geq 4[/TEX]
BPT \Leftrightarrow [TEX]\sqrt{2(x^2-16)}+x-3 > 7-x[/TEX]
\Leftrightarrow[TEX]\sqrt{2(x^2-16)} > 10-2x[/TEX]
\Leftrightarrow[TEX]\left{\begin{10-2x<0}\\{x^2-16 \geq 0}[/TEX]
hoặc [TEX]\left{\begin{10-2x \geq 0}\\{2(x^2-16)> (10-2x)^2[/TEX]
 
Last edited by a moderator:
0

0915549009

2)
[TEX] \frac{1}{1-x^2} > \frac{3x}{\sqrt{1-x^2}} -1 [/TEX]
Em chẳng bik là làm đúng hay sai nữa: :D:D:D
[TEX] \frac{1}{1-x^2} > \frac{3x}{\sqrt{1-x^2}} -1 \Leftrightarrow 1-3x\sqrt{1-x^2}{1-x^2} > -1 \Leftrightarrow -3x\sqrt{1-x^2} > x^2-2\Leftrightarrow \sqrt{9x^2}(1-x^2)<2-x^2\Leftrightarrow 9x^2-9^2<4-4x^2+x^4\Leftrightarrow 13x^2-10x^4-4 < 0[/TEX]
 
Last edited by a moderator:
Q

quyenuy0241

dk:-1 <x<1
BPT <=> [tex]\frac{2-x^2}{1-x^2} > \frac{3x}{\sqrt{1-x^2}}[/tex]
<=>[tex]\frac{2-x^2}{\sqrt{1-x^2}} >3x[/tex]
+)-1<x\leq0 thì ok
+) 0<x<1 thì bình phương 2 vế

Có cần thiết phải thế không?

Để ý [tex] \frac{1}{1-x^2}-1=\frac{x^2}{1-x^2}[/tex]

\Leftrightarrow [tex]\frac{x^2}{1-x^2}-3\frac{x}{\sqrt{1-x^2}}+2> 0 [/tex]

Có lẽ bạn đã nhìn thấy ẩn phụ :D:D:D
 
Last edited by a moderator:
V

vuanoidoi

tiếp đê

1)
[TEX] \frac{1}{x^2} + \frac{x^2}{1-x^2} + \frac{5}{2}(\frac{\sqrt{1-x^2}}{x}+\frac{x}{\sqrt{1-x^2}} +2 >0[/TEX]
dk:-1<x<1 ; x#0
đặt:[tex] \frac{1}{x^2} =a >0[/tex]
=> [tex] \frac{x^2}{1-x^2} = \frac{1}{a-1}[/tex]
xét 2 TH:
+) 1>x>0 thì luon đúng
+)-1<x<0 thì biến đổi cái căn
VD: [tex]\frac{\sqrt{1-x^2}}{x}=-\sqrt{\frac{1-x^2}{x^2}}[/tex]
đến đây chỉ việc thế
 
Q

quyenuy0241

tiếp đê

1)
[TEX] \frac{1}{x^2} + \frac{x^2}{1-x^2} + \frac{5}{2}(\frac{\sqrt{1-x^2}}{x}+\frac{x}{\sqrt{1-x^2}} +2 >0[/TEX]

Để ý [tex]\frac{1}{x^2}-1= \frac{1-x^2}{x^2} [/tex]

Đặt [tex]\frac{\sqrt{1-x^2}}{x}+\frac{x}{\sqrt{1-x^2}}=t [/tex]

Suy ra [tex] \frac{1-x^2}{x^2}+\frac{x^2}{1-x^2}= t^2-2 [/tex]

BPT \Leftrightarrow [tex]t^2+\frac{5t}{2}>0 [/tex]
 
T

tell_me_goobye

tiếp

[TEX] 1) \sqrt{x^2-8x+15} +\sqrt{x^2+2x-15} \geq \sqrt{4x^2-18x+18}[/TEX]

1) gpt
[TEX]18x^2-13x+2 =\sqrt{3(81x^4-108x^3+56x^2-12x+1)}[/TEX]

[TEX]2) 3x^3 -13x^2+30x-4 = \sqrt{(6x+2)(3x-4)^3}[/TEX]
 
Last edited by a moderator:
P

puu

tiếp

[TEX] 1) \sqrt{x^2-8x+15} +\sqrt{x^2+2x-15} \geq \sqrt{4x^2-18x+18}[/TEX]
đk: [TEX]x\geq 5[/TEX] hoặc [TEX]x\leq -5[/TEX]
\Leftrightarrow[TEX]\sqrt{(x-3)(x-5)}+\sqrt{(x+5)(x-3)} \geq \sqrt{2(x-3)(2x-3)}[/TEX]
xét TH1: x\geq5 thì BPT \Leftrightarrow[TEX]\sqrt{x-5}+\sqrt{x+5} \geq \sqrt{2(2x-3)}[/TEX]
TH2: x\leq -5 thì BPT \Leftrightarrow [TEX]\sqrt{5-x}+\sqrt{-x-5} \leq \sqrt{2(3-2x)}[/TEX]
 
Last edited by a moderator:
D

duynhan1

tiếp

[TEX] 1) \sqrt{x^2-8x+15} +\sqrt{x^2+2x-15} \geq \sqrt{4x^2-18x+18}[/TEX]

[TEX] \Leftrightarrow \sqrt{(x-3)(x-5)} + \sqrt{(x-3)(x+5)} \geq \sqrt{(x-3)(4x-6)}[/TEX]



TH1: [TEX]x \leq -5 [/TEX]

[TEX] \Leftrightarrow \sqrt{5-x} + \sqrt{-x-5} \geq \sqrt{6-4x}[/TEX]

TH2: [TEX]x \geq 5 [/TEX]

[TEX] \Leftrightarrow \sqrt{x-5} + \sqrt{x+5} \geq \sqrt{4x-6}[/TEX]
 
Last edited by a moderator:
B

bigbang195

[TEX]2x(x-1) +1 > \sqrt{x^2-x+1}[/TEX]
____________________________________________
 
Last edited by a moderator:
Top Bottom