B
buimaihuong
$\sqrt[3]{x^2 - 1} - 2 + x - 3 = \sqrt{x^3 - 2} - 5$
$\frac{x^2 - 9}{\sqrt[3]{x^2 - 1} + 2} + x-3 = \frac{x^3 - 27}{ sqrt{x^3 -2} + 5}$
$(x-3)(\frac{x+3}{\sqrt[3]{x^2 - 1} + 2} + 1 - \frac{x^2 + 3x + 9}{ sqrt{x^3 -2} + 5})=0$
+x=3
+$\frac{x+3}{\sqrt[3]{x^2 - 1} + 2} + 1 - \frac{x^2 + 3x + 9}{ sqrt{x^3 -2} + 5}=0$
$\frac{x^2 - 9}{\sqrt[3]{x^2 - 1} + 2} + x-3 = \frac{x^3 - 27}{ sqrt{x^3 -2} + 5}$
$(x-3)(\frac{x+3}{\sqrt[3]{x^2 - 1} + 2} + 1 - \frac{x^2 + 3x + 9}{ sqrt{x^3 -2} + 5})=0$
+x=3
+$\frac{x+3}{\sqrt[3]{x^2 - 1} + 2} + 1 - \frac{x^2 + 3x + 9}{ sqrt{x^3 -2} + 5}=0$
Last edited by a moderator: