[Sinh 10] Tài liệu ( vi sinh vật)

C

canhcutndk16a.

3.11. Khả năng thủy phân pectin
• Môi trường:
Cao men 5 g
CaCl2.2H2O 0,5 g
Thạch 8 g
Na-polypectat 10 g
Nước cất 1000 ml
NaOH 1N 9 ml
Dung dịch BTB 0,2% 12,5 ml.
Để hoà tan Na-polypectat và các thành phần khác cần khuấy mạnh và làm nóng môi trường trong nồi cách thủy. Khử trùng ở 121 0C không quá 5 phút rồi đổ đĩa Petri.
• Cấy vi khuẩn mới hoạt hoá thành 8 chấm trên thạch đĩa, đặt ở nhiệt độ thích hợp 3 ngày rồi quan sát. Nếu quanh vết cấy có vệt lõm xuống là dương tính (Erwinia carotova); không có vệt lõm xuống là âm tính (Erwinia herbicola).

3.12. Khả năng thủy phân Esculin
• Môi trường:
Bổ sung Esculin (0,1%) và citrat sắt (0,05%) vào môi trường nước thịt pepton. Phân môi trường vào các ống nghiệm để làm thạch nghiêng. Khử trùng ở 121 0C trong 20 phút.
• Cấy vi khuẩn mới hoạt hoá (18-24 giờ), đặt ở nhiệt độ thích hợp sau 3,7 và 14 ngày rồi lấy ra để quan sát.
• Kết quả: xuất hiện sắc tố màu đen nâu là phản ứng dương tính, không có là âm tính

3.13. Khả năng tạo Dextran và Levan
• Môi trường
Casein thủy phân 15 g
Pepton 5 g
Đường kính 50 g
K2HPO4 4 g
Thạch 10 g
Nước cất 1000 ml
Dung dịch Xanh Trypan (Tripan blue) 1% trong nước 7,5 ml
Dung dịch Tím kết tinh 1% trong nước 0,1 ml
pH 7,0
Khử trùng ở 115 0C trong 20 phút. Để nguội đến 50 0C, thêm 1ml dung dịch Kali-tellurit 1% (đã khử trùng bằng màng lọc) rồi đổ đĩa Petri.
• Cấy ria để tạo khuẩn lạc đơn. Đặt ở 37 0C trong 24 giờ, sau đó giữ thêm ở nhiệt độ phòng trong 24 giờ.
• Vi khuẩn sinh dextran sẽ có khuẩn lạc nhỏ, màu lam tối, bề mặt nhầy và mọc lõm vào thạch (loài Streptococcus sanguis).
Vi khuẩn sinh levutan có khuẩn lạc nhầy màu phấn hồng (Streptococcus salivarius).
Nếu không sinh dextran và levan thì vi khuẩn có màu lam nhạt hoặc tối, kích thước nhỏ, dễ hóa sữa (Streptococcus mitis).

3.14. Xác định 3-Ketolactoza
• Môi trường:
Lactoza 10 g
Cao men 1 g
Thạch 20 g
Nước cất 1000 ml
pH = 7,0-7,2
Khử trùng ở 115 0C trong 20-30 phút, đổ đĩa Petri.
• Lấy vi khuẩn mới hoạt hoá (18-24 giờ) cấy điểm lên thạch đĩa, đặt ở nhiệt độ thích hợp trong 2 ngày để tạo khuẩn lạc rõ rệt.
• Pha thuốc thử Benedict:
CuSO4.5H2O 17,3 g
Na2CO3 (khan) 100 g
Na-Citrat 173 g
Nước cất thêm tới 1000 ml
Cách pha: hoà Na2CO3 và Na-Citrat trong 600 ml nước cất, lọc trong, sau đó thêm nước tới 850ml. Hoà tan CuSO4 trong 100 ml nước, bổ sung nước cho tới 150 ml. Cuối cùng trộn dung dịch CuSO4 vào dung dịch đầu, vừa đổ vừa khuấy.
• Nhỏ thuốc thử Benedict lên khuẩn lạc trên mặt đĩa thạch, để từ 30 phút trở lên ở nhiệt độ phòng.
• Kết quả: nếu quanh khuẩn lạc xuất hiện những kết tủa màu nâu thì là phản ứng dương tính, nếu không thì là âm tính.

3.15. Khả năng khử Nitrat
• Môi trường:
Nước thịt pepton 1000 ml
KNO3 1 g
pH = 7,0-7,6
Phân môi trường vào các ống nghiệm (4-5 ml/ống), khử trùng ở 121 0C trong 15-20 phút.
• Chuẩn bị thuốc thử Griess:
Dung dịch A: Acid sulfanilic 0,5 g
Acid acetic loãng (khoảng 10%) 150 ml.
Dung dịch B: Alpha Naphtylamin 0,1 g
Nước cất 20 ml
Acid acetic loãng (khoảng 10%) 150 ml.
• Chuẩn bị thuốc thử Diphenylamin: 0,5 g Diphenylamin hòa vào 100 ml H2SO4 đặc, thêm 20ml nước cất.
• Cấy vi khuẩn mới hoạt hoá vào môi trường (mỗi chủng cấy 2 ống), đặt ở nhiệt độ thích hợp trong 1,3,5 ngày. Chọn 2 ống không cấy vi khuẩn để làm đối chứng.
• Lấy ống nghiệm sạch và bổ sung lần lượt các dung dịch như sau:
Dịch nuôi cấy vi khuẩn (hoặc môi trường ở ống đối chứng)
1 giọt dung dịch A
1 giọt dung dịch B
• Kết quả:
- Nếu dịch nuôi cấy chuyển màu (đỏ, hồng, da cam hay nâu) là biểu thị có nitơrit, tức là vi khuẩn có khả năng khử Nitrat.
- Nếu dịch nuôi cấy không chuyển màu, thêm 1-2 giọt thuốc thử Diphenylamin để kiểm tra sự có mặt của Nitrat (chuyển màu xanh lam là có Nitrat chứng tỏ vi khuẩn không khử Nitrat; không chuyển màu tức là Nitrat đã được khử hết và nitơrit được khử tiếp tục thành các chất khác như N2).
• Chú ý: phản ứng khử Nitrat thực hiện trong điều kiện kỵ khí, vì vậy không được phân vào ống nghiệm quá ít môi trường.
Đối với các vi khuẩn khác nhau nitơrit có thể là sản phẩm cuối cùng của quá trình khử Nitrat, nhưng cũngcó thể chỉ là sản phẩm trung gian. Ngoài ra, tốc độ khử của các loài cũng khác nhau, vì thế cần theo dõi thường xuyên màu sắc của môi trường. Trong mọi trường hợp cần phải làm thêm phản ứng với chất chỉ thị diphenylamin.
 
C

canhcutndk16a.

3.16. Khả năng khử Nitrit• Môi trường:
Peptone 5 g
NaNO2 1 g
Nước cất 1000 ml
pH = 7,3-7,4
Phân môi trường vào các ống nghiệm, khử trùng ở 121 0C trong 15 phút.
• Chuẩn bị thuốc thử Griess: giống như phần khử Nitrat.
• Cấy vi khuẩn, đặt ở 30 0C trong 1,3,7 ngày rồi làm phản ứng xác định.
• Nhỏ vào dịch nuôi cấy 1 giọt dung dịch A và 1 giọt dung dịch B (xem phần khử Nitrat), lắc nhẹ. Nếu mất màu đỏ và sinh ra NH3 là kết quả dương tính (Alcaligenes odorans); nếu vẫn giữ màu đỏ là phản ứng âm tính, không khử nitơrit (Acinetobacter calcoaceticus).

3.17. Khả năng phản nitrat hóa (Denitrification)
• Môi trường:
Nước thịt pepton 100 ml
KNO3 1 g
pH = 7,2-7,4
Phân môi trường vào các ống nghiệm (4-5 ml), khử trùng ở 121 0C trong 30 phút.
• Cấy vi khuẩn mới hoạt hoá. Dùng vaselin bịt kín nút để ngăn ôxy, đặt ở nhiệt độ thích hợp trong 1-7 ngày và quan sát sự phát triển của vi khuẩn (tăng độ đục của dịch nuôi cấy, sinh khí NH3). Vi khuẩn có phát triển là phản ứng dương tính, không phát triển là âm tính.

3.18. Khả năng sinh amonia
• Môi trường:
Pepton 5 g
Nước cất 1000 ml
pH= 7,2
Phân môi trường vào các ống nghiệm, khử trùng ở 121 0C trong 15-20 phút.
• Chuẩn bị thuốc thử Nessler:
Hoà tan 20 g IK trong 50 ml nước; bổ sung I2Hg cho đến khi bão hòa (khoảng 32g), sau đó thêm 460 ml nước. Cuối cùng bổ sung 134 g KOH. Bảo quản trong lọ tối ở nhiệt độ phòng.
• Cấy vi khuẩn mới hoạt hoá (18-24 giờ), đặt ở nhiệt độ thích hợp trong 1,3,5 ngày.
• Lấy vào ống nghiệm sạch một ít dịch nuôi cấy, nhỏ vài giọt thuốc thử Nessler. Nếu xuất hiện kết tủa màu vàng nâu là phản ứng dương tính.

3.19. Xét nghiệm Ureaza
Mục đích: kiểm tra khả năng phân huỷ urê nhờ enzyme ureaza
• Môi trường:
Pepton 1 g
NaCl 5 g
Glucoza 1 g
KH2PO4 2 g
Dung dịch Đỏ phenol 0,2% trong nước 6 ml
Thạch 20 g
Nước cất 1000 ml
Khử trùng xong chỉnh pH đến 6,8-6,9, môi trường có màu vàng hơi ánh đỏ là được. Phân môi trường vào các ống nghiệm để làm thạch nghiêng. Khử trủng lại ở 115 0C trong 30 phút.
• Chuẩn bị dung dịch Urê 20%, khử trùng bằng màng lọc, bổ sung vào các ống nghiệm khi đã nguội đến 50-55 0C (đạt nồng độ Urê 2%), đặt thạch nghiêng.
• Cấy vi khuẩn mới hoạt hoá, đặt ở nhiệt độ thích hợp, sau 2-4 giờ lấy ra quan sát. Kết quả âm tính cần tiếp tục quan sát sau 4 ngày.
• Kết quả: môi trường chuyển màu đỏ cánh đào là phản ứng dương tính, màu sắc không thay đổi là âm tính.
• Chú ý: cần làm đối chứng âm tính (không bổ sung Urê), nhất là khi xác định các loài Pseudomonas, và đối chứng dương tính (so sánh với 1 chủng đã biết có hoạt tính ureaza).
Làm cách khác:
• Cấy vi khuẩn vào môi trường thạch nghiêng nói trên và xác định hoạt tính ureaza sau 3 ngày và 7 ngày.
• Lấy vi khuẩn từ thạch nghiêng làm dịch huyền phù đậm đặc trong ống nghiệm sạch.
• Nhỏ 1 giọt Đỏ phenol vào dịch huyền phù, chỉnh pH đến 7 (Đỏ phenol chuyển từ vàng sang da cam).
• Chia dịch huyền phù vào 2 ống nghiệm sạch. Trong ống 1 thêm vài tinh thể Urê (khoảng 0,05-0,1 g), ống thứ 2 giữ nguyên để làm đối chứng. Sau vài phút nếu dịch trong ống 1 (có Urê) chuyển sang kiềm (Đỏ phenol chuyển màu đỏ), biểu thị vi khuẩn có hoạt tính Ureaza; nếu không thì là âm tính.
 
C

canhcutndk16a.

3.20. Xét nghiệm sinh Indol
• Môi trường:
Dung dịch Pepton 1% trong nước
pH đến 7,2- 7,6.
Phân môi trường vào các ống nghiệm (1/3-1/4 thể tích ống), khử trùng ở 115 0C trong 30 phút.
• Chuẩn bị thuốc thử:
Para-dimethyl-amino-benzaldehyde 8g
Etanol 95% 760 ml
HCl đặc 160 ml
• Cấy vi khuẩn mới hoạt hoá (18-24 giờ), đặt ở nhiệt độ thích hợp và làm phép thử tại các thời điểm 1, 2, 4, 7 ngày.
• Nhỏ thuốc thử theo mép ống nghiệm (tạo thành lớp dày 3-5 mm). Giữa hai lớp thuốc thử và dịch nuôi cấy nếu có màu đỏ là phản ứng dương tính. Nếu màu sắc không rõ rệt thì thêm 4-5 giọt eter vào dịch nuôi cấy, lắc nhẹ làm cho eter khuếch tán vào lớp dịch, để yên một lát khi eter nổi lên bề mặt thì lại thêm thuốc thử nói trên. Nếu trong môi trường có indol thì sẽ xuất hiện màu đỏ trong lớp eter.

3.21. Xét nghiệm Phenylalanin desaminaza
(kiểm tra khả năng chuyển hoá nhóm amin (NH2) trong acid amin)
• Môi trường:
Cao men 3 g
Na2HPO4 1 g
DL-Phenylalanin (hoặc L-Phenylalanin) 1 g
NaCl 5 g
Thạch 12 g
Nước cất 1000 ml
pH = 7,0
Phân môi trường vào các ống nghiệm, khử trùng ở 121 0C trong 10 phút, đặt thạch nghiêng.
• Thuốc thử: dung dịch FeCl3 10% (W/V)
• Cấy vi khuẩn mới hoạt hoá, đặt ở 37 0C, làm phép thử sau 4 giờ hoặc 8-24 giờ.
• Nhỏ 4-5 giọt thuốc thử lên bề mặt thạch nghiêng có vi khuẩn phát triển, nếu xuất hiện màu lục là phản ứng dương tính (do sản sinh ra acid Phenylpyruvic), nếu không đổi màu thì là phản ứng âm tính.
 
C

canhcutndk16a.

3.22. Tryptophan desaminaza
Có hai cách kiểm tra:
Cách thứ nhất:
xác định đồng thời Tryptophan desaminaza, Ureaza và khả năng sinh Indol.
• Môi trường:
L-Tryptophan 3 g
KH2PO4 1 g
K2HPO4 1 g
NaCl 5 g
Etanol 95% 10 ml
Nước cất 900 ml.
Thêm Đỏ phenol (khoảng 25- 30mg)
pH = 6,8-6,9
Phân môi trường vào các bình tam giác, khử trùng ở 121 0C trong 20 phút.
• Hoà 20 g Urê vào 100ml nước, khử trùng bằng màng lọc, bổ sung vào môi trường đã chuẩn bị ở trên (thao tác vô trùng). Phân môi trường vào các ống nghiệm vô khuẩn (3-4 ml).
• Cấy vi khuẩn mới hoạt hoá (18-24 giờ), nuôi ở nhiệt độ thích hợp trong 24 giờ.
• Lấy ra 2-4 giọt dịch nuôi cấy, thêm 1 giọt dung dịch FeCl3 (khoảng 33%). Nếu hiện màu nâu đỏ là phản ứng Tryptophan desaminaza dương tính, không hiện màu là phản ứng âm tính. Dùng vi khuẩn Proteus làm đối chứng dương tính.
• Nếu môi trường sau khi nuôi cấy vi khuẩn chuyển từ màu vàng sang đỏ là biểu hiện có hoạt tính Ureaza. Dùng thuốc thử para-dimethylaminobenzaldehyd để kiểm tra sự hình thành indol. Nếu không định kiểm tra ureaza thì không cần bổ sung Đỏ phenol và Urê vào môi trường.

Cách 2 thứ hai:
• Chuẩn bị hoá chất:
L-Tryptophan 0,2-0,5%
Nước muối sinh lý hoặc dung dịch đệm phosphat pH 6,8
Dịch A: 50 ml KH2PO4 0,2 M (27,2g/L)
Dịch B: 23,6 ml Na2CO3 0,2 M (8g/L)
Trộn dịch A và B với nhau
FeCl3 33%
• Cấy vi khuẩn vào môi trường thạch nghiêng nước thịt pepton, đặt ở nhiệt độ thích hợp trong 24 giờ.
• Lấy 4 ống nghiệm sạch, thêm vào mổi ống 4 giọt dung dịch L- Tryptophan 0,2-0,5% và 4 giọt nước muối sinh lý (hay dung dịch đệm phosphat pH 6,8).
• Lấy vi khuẩn từ thạch nghiêng làm thành dịch huyền phù đậm đặc trong 2 ống, để lại 2 ống làm đối chứng, giữ ở nhiệt độ phòng trong 15-20 phút.
• Thêm vào mỗi ống 1 giọt dung dịch FeCl3 (33%). Nếu hiện màu nâu đỏ là phản ứng dương tính, không đổi màu là âm tính. Có thể dùng vi khuẩn Proteus làm đối chứng dương tính.

3.23. Carboxylaza đối với Ornithin, Lysin, và Arginin
• Môi trường:
Pepton 5 g
Cao thịt 5 g
D-Glucoza 0,5 g
Bromocresol purple (BCP) 1,6% 0,625 ml
Đỏ Cresol 0,2% 2,5 ml
Thạch 3-6 g
Nước cất 1000 ml
Hòa tan các thành phần trên trong nồi cách thủy, chỉnh đến pH 6, thêm chỉ thị màu.
• Chia môi trường thành 4 phần đều nhau, bổ sung từng chất L-Ornithin, L-Lysin, L-Arginin với nồng độ 1% (nếu dùng DL-acid amin thì lấy nồng độ 2%), sau đó chỉnh pH đến 6,0-6,3. Một phần không thêm acid amin dùng làm đối chứng. Phân vào các ống nghiệm nhỏ (mỗi ống 3-4 ml), khử trùng ở 121 0C trong 10 phút. Môi trường chứa Ornithin có thể tạo một ít kết tủa nhưng không ảnh hưởng đến kết quả thí nghiệm.
• Cấy vi khuẩn mới hoạt hoá (18-24 giờ), sau đó đổ vaselin bịt kín nút, nuôi ở điều kiện thích hợp. Vi khuẩn đường ruột thuộc họ Enterobacterobacteriaceae cần nuôi ở 37 0C trong 4 ngày và theo dõi kết quả hàng ngày. Các vi khuẩn phi lâm sàng nuôi ở 30 0C, quan sát trong 7 ngày. Nếu chỉ thị màu chuyển sang màu tía hay màu tía có ánh đỏ là dương tính, nếu màu vàng (như ống đối chứng) là âm tính. Vi khuẩn đường ruột thường biểu hiện phản ứng dương tính sau 1-2 ngày, nhưng cũng có khi chậm hơn, cần theo dõi qua 3-4 ngày.
 
C

canhcutndk16a.

3.24. Arginin dihydrolaza• Môi trường Thornley:
Pepton 1 g
NaCl 5 g
K2HPO4¬ 0,3 g
Thạch 6 g
Đỏ Phenol 0,01 g
L-Arginat 10 g
Nước cất 1000 ml
pH = 7,0-7,2.
Phân môi trường vào các ống nghiệm (4-5 ml), khử trùng ở 121 0C trong 15 phút. Chú ý làm ống đối chứng không có Arginat.
• Cấy vi khuẩn mới hoạt hoá, dùng vaselin bịt kín nút ống nghiệm, nuôi ở nhiệt độ thích hợp trong 3, 7, 14 ngày để quan sát. Môi trường chuyển sang màu đỏ là dương tính, không chuyển màu là âm tính.

3.25. Acetylamin
• Dung dịch Acetylamin:
Acetylamin 2 g
Nước cất 20 ml
(không cần khử trùng)
• Dung dịch đệm:
K2HPO4 0,4 g
KH2PO4 0,1 g
KCl 8 g
Nước cất 1000 ml
Khử trùng ở 115 0C trong 20 phút.
• Dung dịch làm thí nghiệm: Pha loãng dung dịch Acetylamin trong dung dịch đệm theo tỷ lệ 1:99 vol/vol.

• Thuốc thử Nessler:
KI 5 g
Nước cất 5 ml
Thêm dịch HgCl2 bão hoà, để lạnh cho đến khi lắc mạnh mà vẫn còn một ít kết tủa thì dừng. Thêm 40ml NaOH 9N rồi bổ sung nước đến 100 ml.
Lấy 1 vòng que cấy vi khuẩn trộn với dịch thí nghiệm nói trên, đặt ở nhiệt độ thích hợp trong 24 giờ. Thêm 1 giọt thuốc thử Nessler. Phản ứng là dương tính khi tạo kết tủa màu đỏ nâu hay nâu (vi khuẩn Comamonas acidovorans), phản ứng âm tính khi thấy màu vàng (Pseudomonas stutzeri).

3.26. Thủy phân Hippurat ; Phương pháp Yong & Thompson
(dùng khi định tên Streptococcus, Campylobacter và Gardnerella vaginalis):
• Dung dịch cơ chất:
Na-Hippurat 0,25 g
Nước cất 25 ml
Khử trùng bằng màng lọc
• Thuốc thử :
Ninhydrin 3,5 g
Aceton-butanol (1:1 vol/vol) 100 ml
Bảo quản trong lọ tối
• Cấy 2 giọt huyền phù vi khuẩn vào dung dich cơ chất, giữ ở 37 0C trong 1 giờ. Thêm 2 giọt thuốc thử, giữ 15 phút.
• Phản ứng là dương tính nếu xuất hiện màu đỏ tía (Campylobacter jejuni, Gardnerella vaginlis, Streptococcus agalactiae), phản ứng là âm tính nếu sau 15 phút chưa đổi màu (Campylobacter coli, Streptococcus agalactiae).
• Chú ý: lượng vi khuẩn cấy phải thỏa đáng, thời gian ủ trước và sau khi thêm thuốc thử phải chuẩn xác. Tránh ánh sáng khi giữ thuốc thử.
Phương pháp Baird-Parker:
• Môi trường:
Pepton tụy tạng 10 g
Cao thịt 1 g
Glucoza 1 g
NaH2PO4¬ 5 g
Na-Hyppurat 10 g
Nước cất 1000 ml
Phân môi trường vào các ống nghiệm, khử trùng ở 121 0C trong 30 phút.
• Thuốc thử:
H2SO4 đặc 50 ml
Nước cất 50 ml
Đổ từ từ H2SO4 đặc vào nước cất
• Cấy vi khuẩn mới hoạt hoá (18-24 giờ) vào môi trường trên, nuôi ở nhiệt độ thích hợp trong thời gian 4-6 tuần.
• Phản ứng xét nghiệm: trộn 1 ml dịch nuôi cấy với 1,5 ml thuốc thử. Phản ứng là dương tính khi xuất hiện tinh thể (do Hyppyrat được chuyển hoá thành Benzoin); không xuất hiện tinh thể là âm tính.
 
C

canhcutndk16a.

3.27. Hoạt tính ADN-aza
Môi trường:
Pepton casein
Pepton đậu tương
NaCl
ADN
Toluid-Blue
Thạch
Nước cất
10 g
5 g
5 g
2 g
0,1 g (có thể pha thành dung dịch rồi cho vào)
15 g
1000 ml

Hoà tan các thành phần của môi trường bằng nhiệt, sau đó bổ sung ADN và Toluid-blue, trộn đều rồi phân vào bình. Khử trùng ở 121 0C trong 30 phút, đổ thạch đĩa.
• Cấy vi khuẩn mới hoạt hoá (18-24 giờ) thành điểm trên đĩa thạch, nuôi ở điều kiện thích hợp trong 2 ngày.
• Phản ứng là dương tính trong trường hợp quanh cụm cấy có vòng màu đỏ (dùng chủng Salmonella để làm đối chứng dương tính).

3.28. Hoạt tính Phosphataza
• Môi trường:
Làm nóng chảy môi trường thạch-nước thịt-pepton (đã khử trùng)
Thêm 1% Phenolphthalein diphosphat (khử trùng bằng màng lọc).
Đổ thạch đĩa.
• Cấy vi khuẩn mới hoạt hoá thành điểm trên thạch đĩa, nuôi ở điều kiện thích hợp trong 2 ngày.
• Phản ứng xét nghiệm: lấy 0,1ml nước amonia phủ lên mặt thạch, sau 20 phút xem kết quả. Phản ứng là dương tính nếu khuẩn lạc chuyển màu đỏ phấn (Staphylococcus aureus); không chuyển màu là âm tính.

3.29. Khả năng làm dịch hóa Gelatin
• Môi trường:
Pepton 5 g
Gelatin 100-150 g
Nước cất 1000 ml
pH = 7,2-7,4
Phân môi trường vào các ống nghiệm (4-5 ml), khử trùng ở 115 0C trong 20 phút.
• Cấy vi khuẩn mới hoạt hoá (18-24 giờ) chích sâu vào môi trường gelatin, giữ 2 ống không cấy làm đối chứng, nuôi ở 20 0C trong thời gian 2,7,10,14,30 ngày.
• Quan sát khả năng làm dịch hoá gelatin tại nhiệt độ phòng từ 20 0C trở xuống. Nếu bề mặt môi trường gelatin không lõm xuống, gelatin vẫn ở trạng thái ổn định là phản ứng âm tính (không sinh gelatinaza); nếu một phần hay toàn bộ gelatin hóa lỏng thì là phản ứng dương tính. Nếu so với đối chứng âm tính thấy vi khuẩn đã mọc, gelatin chưa hóa lỏng nhưng bề mặt lõm xuống thì cũng vẫn coi là dương tính (mức độ dịch hóa thấp). Nếu vi khuẩn hoàn toàn không sinh trưởng thì có thể là không mọc được trên gelatin hoặc môi trường cơ sở chưa thích hợp.
• Chú ý:
- Nếu vi khuẩn chỉ sinh trưởng ở nhiệt độ trên 20 0C, lúc quan sát gelatin hoá lỏng cần đặt ống nuôi cấy một lúc vào nước lạnh rồi so sánh với đối chứng âm tính.
- Khử trùng ở nhiệt độ quá cao hay quá thấp đều ảnh hưởng đến kết quả, nên khử trùng ở 115 0C trong 15 phút.
- Gelatin chất lượng không đều nhau, lượng dùng khó thống nhất, nên chọn nồng độ tạo đông tốt ở 20 0C là được. Nên dùng thống nhất một loại gelatin cho toàn bộ thí nghiệm.
nh.jpg

Hình 3.7. Ví dụ minh hoạ kết quả kiểm tra khả năng làm dịch hoá gelatin (sinh gelatinaza), Escherichia coli- âm tính, Pseudomonas aeruginosa- dương tính.
 
C

canhcutndk16a.

3.30. Hoạt tính Lipaza (với Tween 80)
• Môi trường:
Pepton 10 g
NaCl 5 g
CaCl2. 2H2O 0,1 g
Thạch 9 g
Nước cất 1000 ml
pH = 7,4.
Khử trùng ở 121 0C trong 20 phút, để nguội đến 50 0C rồi thêm Tween 80 đến nồng độ 1%, đổ thạch đĩa (có thể thay Tween 80 bằng dầu tributyrin).
• Cấy vi khuẩn mới hoạt hoá (18-24 giờ) thành vạch, nuôi trong 7 ngày, hàng ngày lấy ra quan sát.
• Phản ứng là dương tính nếu quanh vết cấy có vạch trong, nếu không có thì là âm tính.
vbf.jpg

Hình 3.8. Ví dụ minh hoạ kết quả phản ứng thử hoạt tính Lipaza: âm tính - Salmonella typhimurium (bên trái), dương tính - P. aeruginossa (bên phải).

3.31. Hoạt tính Lipaza (với dầu ngô)
• Môi trường:
Pepton 10 g
Cao 3 g
NaCl 3 g
Thạch 20 g
Xanh Victoria (Victoria Blue)
dung dịch 1:5000 trong nước 100 ml
Dầu ngô 50 ml
Nước cất 900 ml.
Hoà tan các thành phần của môi trường (trừ dầu ngô) bằng đun nóng, sau đó bổ sung dầu ngô, khuấy đều bằng máy khuấy từ, chỉnh đến pH 7,8. Phân môi trường vào các ống nghiệm, khử trùng ở 115 0C trong 30 phút. Đặt thạch nghiêng hoặc đổ thạch đĩa, môi trường có màu đỏ nhạt.
• Cấy vi khuẩn mới hoạt hoá (18-24 giờ), nuôi ở nhiệt độ thích hợp trong 24 giờ.
• Quan sát: phản ứng là dương tính khi môi trường chuyển sang màu lam, không chuyển màu là âm tính.
fd.jpg


Hình 3.9. Ví dụ minh hoạ kết quả phản ứng thử hoạt tính lipaza với dầu ngô.

3.32. Hoạt tính Lecithinaza
• Trộn lòng đỏ trứng với cùng trọng lượng nước muối sinh lý (thao tác vô trùng) tạo thành dịch huyền phù.
• Lấy ra 10 ml dịch huyền phù trên hòa tan vào môi trường thạch-nước thịt-pepton vừa khử trùng, để nguội đến 50-55 0C rồi đổ đĩa Petri.
• Cấy vi khuẩn mới hoạt hoá (18-24 giờ) thành điểm trên đĩa thạch, mỗi điểm đường kính khoảng 2-3mm. Cấy 5-7 chủng trên một đĩa. Với vi khuẩn kỵ khí có thể đậy lá kính mỏng (lamelle) lên vết cấy, tuy nhiên tốt nhất là đưa vào tủ nuôi kỵ khí.
• Đặt ở nhiệt độ thích hợp trong 18-24 giờ, một số chủng (như chi Bacillus) cần thời gian lâu hơn (48 giờ) và quan sát biến đổi của môi trường thạch.
• Nếu xung quang và dưới vết cấy có vạch trong là phản ứng dương tính (Lecithin được chuyển hoá thành lipid do vi khuẩn sinh men lecithinaza).
• Chú ý: khi trộn dịch huyền phù lòng đỏ trứng vào môi trường thạch không nên tiến hành ở nhiệt độ quá cao vì sẽ làm ngưng kết lecithin có trong lòng đỏ trứng.
cm.jpg

Hình 3.10. Khả năng phân hủy Lecithin của Clostridium
 
C

canhcutndk16a.

3.33. Khả năng sản sinh H2S
Phương pháp giải giấy
• Môi trường:
Pepton 10 g
NaCl 5 g
Cao thịt 10 g
Cystein 0,5 g
Nước cất 1000 ml
pH = 7,0-7,4
Phân môi trường vào các ống nghiệm (4-5 ml), khử trùng ở 112 0C trong 20-30 phút.
• Cắt giấy lọc thành dải rộng 0,5-1cm, độ dài tùy thuộc vào ống nghiệm và độ cao của môi trường. Tẩm vào giấy dung dịch Chì-acetat, sấy khô giấy trong tủ sấy đặt trong hộp Petri và khử trùng.
• Cấy vi khuẩn mới hoạt hoá (18-24 giờ). Dùng panh vô khuẩn gắp giấy tẩm chì-acetat đưa vào từng ống nghiệm, dài đến nút bông nhưng không chạm vào môi trường. Nuôi vi khuẩn ở nhiệt độ thích hợp, sau 3,7,14 ngày thì lấy ra quan sát. Nếu giấy biến đen là phản ứng dương tính, nếu không đổi mầu thì là âm tính.
• Chú ý: phương pháp này rất mẫn cảm, không thích hợp đối với trực khuẩn đường ruột. Không đặt giấy lọc tẩm chì-acetat gần mặt môi trường quá để tránh bị hút ẩm, nhưng cũng không nên đặt cách xa quá. Ngoài ống đối chứng không cấy vi khuẩn nên lấy chủng vi khuẩn đã biết là âm tính để làm đối chứng.
Phương pháp đối với Trực khuẩn đường ruột
• Môi trường:
Cao thịt 7,5 g
Pepton 10 g
NaCl 5 g
Gelatin 100-120 g (hay thạch 15 g)
Dung dịch FeCl2¬ 10% 5 ml (khử trùng riêng bằng màng lọc)
Nước cất 1000 ml
pH = 7,0
Khử trùng ở 112 0C trong 20 phút, bổ sung dung dịch FeCl2 (đã khử trùng) vào khi thạch hay gelatin chưa đông. Phân vào các ống nghiệm vô khuẩn (4-5 ml), ngay lập tức nhúng vào nước lạnh cho đông lại.
• Cấy chích sâu vi khuẩn vào các ống, nuôi ở 30 0C trong 1,3,7 ngày. Nếu môi trường chuyển thành màu đen là phản ứng dương tính, nếu không đổi mầu là âm tính.
• Chú ý: phương pháp này dùng khi cần định tên vi khuẩn thuộc họ Enterobacteriaceae. Có thể dùng FeSO¬4 thay thế cho FeCl2. Nếu nuôi cấy ở 20 0C có thể dùng kết hợp để xác định gelatinaza.

3.34. Khả năng phân giải sữa (Litmus Milk Reaction)
• Môi trường: sữa tươi đun sôi, để lạnh qua đêm, ly tâm và hớt bỏ bơ ở lớp trên, phần dưới là sữa không chứa lipid. Có thể dùng sữa bột đã loại chất béo (hoà tan 100 g sữa bột với 1000 ml nước).
• Thuốc thử Litmus:
hoà tan 2,5 g Litmus trong 100 ml nước cất, lọc bằng giấy lọc, để qua đêm mới sử dụng. Có thể bảo quản lâu.
• Môi trường sữa –Litmus:
Dung dịch Litmus 2,5% 4 ml
Sữa đã loại bơ 1000 ml
Môi trường có màu đỏ tía.
Phân môi trường vào các ống nghiệm (4 ml), khử trùng gián đoạn hay khử trùng ở 112 0C trong 20-30 phút.
• Cấy vi khuẩn mới hoạt hoá (18-24 giờ), nuôi ở nhiệt độ thích hợp, sau 1,3,5,7,14 ngày lấy ra quan sát.
• Dựa vào biến đổi của môi trường mà có những kết luận như sau:
Môi trường chuyển thành màu trắng  phản ứng khử Litmus
Môi trường trở nên trong  phản ứng peptôn hoá
Môi trường chuyển mầu đỏ  phản ứng sinh acid
Môi trường chuyển màu xanh lam  phản ứng sinh kiềm
Môi trường chuyển màu đỏ, sữa ngưng kết  sinh acid và ngưng kết
Ngưng kết do men: không chuyển màu hoặc có màu lam, sữa vón cục và ngưng kết
• Chú ý: tốt nhất nên dùng sữa tươi, không cần điều chỉnh pH.
 
C

canhcutndk16a.

3.35. Khả năng oxy hóa Gluconat
• Đệm Kali phosphat 1/15 mol/L, pH 7,2:
A) KH2PO4 9,078 g/L
B) K2HPO4.12H2O 23,876g/L
Trộn 3 ml dung dịch A với 7 ml dung dịch B để có dung dịch đệm phosphat 1/15 mol/L, pH 7,2
• Thuốc thử Feling:
Dung dịch A: CuSO4 tinh thể 34,64 g
Nước cất thêm tới 500 ml
Dung dịch B: Na-Tartrat 173 g
KOH 125 g
Nước cất thêm tới 500 ml
Trước khi dùng trộn hai dung dịch A và B theo tỷ lệ 1:1 (vol/vol), sử dụng trong ngày.
• Chuẩn bị dung dịch gluconat 1% trong đệm phosphat pH 7,2, phân vào các ống nghiệm, mỗi ống 2ml. Khử trùng 112 0C trong 30 phút.
• Lấy vi khuẩn mới hoạt hoá (18-24 giờ) để tạo dịch huyền phù đậm đặc trong đệm phosphat, giữ ở 30 0C qua đêm.
• Thêm vào mỗi ống 0,5 ml thuốc thử Feling, đặt trong bình cách thủy sôi 10 phút.
• Kết quả: nếu dịch huyền phù chuyển từ màu lam sang màu vàng lục, lục da cam hoặc có kết tủa đỏ là phản ứng dương tính; nếu không đổi màu là âm tính.
• Chú ý: nếu dùng gluconat canxi thì dễ tạo kết tủa với gốc phosphat, tuy nhiên không ảnh hưởng đến kết quả thí nghiệm.

3.36. Khả năng oxy hóa Etanol• Với vi khuẩn Acetobacter dùng môi trường sau:
Cao men 10 g
Nước máy 1000 ml
Xanh Bromophenol (BPB) 0,04% 20 ml.
pH = 6,8-7,0
Phân môi trường vào các ống nghiệm (4-5 ml), khử trùng ở 121 0C trong 20 phút. Lúc sử dụng thêm ethanol vào mỗi ống ở nồng độ khoảng 2-10% (vol/vol)
• Với các vi khuẩn khác: dùng môi trường như trong thí nghiệm oxy hóa/lên men, thay đường bằng etanol với nồng độ 1%. Có thể không cần thạch.
• Cấy vi khuẩn mới hoạt hoá, nuôi 1,3,7,14 ngày trong điều kiện thích hợp
• Kết quả: nếu môi trường chuyển màu vàng (do sinh acid) thì là dương tính, không đổi màu là âm tính.
Phương pháp khác (dùng để phân lập và kiểm định Acetobacter):
• Thêm vào các môi trường nói trên 2% thạch và 1% CaCO3; nồng độ etanol cuối cùng là 2%; không thêm chỉ thị màu. Đổ thạch đĩa.
• Cấy vi khuẩn trên thạch đĩa, nuôi 3, 7, 14 ngày ở điều kiện thích hợp.
• Kết quả: nếu xung quanh khuẩn lạc có vòng phân giải trong là kết quả dương tính, nếu không là âm tính (Acetobacter lúc đầu phân giải CaCO3 nên tạo vòng trong, nhưng sau đó acetat canxi tạo ra bị oxy hóa tiếp chuyển thành CaCO3 vòng trong chuyển màu trắng sữa sáng do acid acetic đã bị oxy hóa).
 
C

canhcutndk16a.

3.37. Khả năng oxy hóa acid acetic
• Môi trường:
Cao men 10 g
Ca-Acetat 10 g
Thạch 20 g
Nước máy 1000 ml
pH 7,0-7,2
Phân môi trường vào bình tam giác hoặc các ống nghiệm lớn để khử trùng, đổ thạch đĩa hoặc làm ống thạch nghiêng.
• Cấy vi khuẩn mới hoạt hoá (18-24 giờ), nuôi 3-5 ngày ở điều kiện thích hợp
• Kết quả: nếu xung quanh khuẩn lạc có vòng trắng sữa là phản ứng dương tính (acetat đã bị oxy hóa, canxi giải phóng ra tạo màu trắng sữa), nếu không thì là âm tính.

3.38. Xác định Indol-Pyruvic acid (IPA)
• Môi trường SIM:
Cao thịt 3 g
Pepton 30 g
Na2S2O3.5H2O 0,05 g
Cystin hydrochlorid 0,2 g
Ammonium-ferric-citrat 0,5 g
Thạch 4 g
Nước cất 1000 ml
Hoà tan các thành phần môi trường trong nồi cách thủy, chỉnh pH đến 7,4, phân vào các ống nghiệm nhỏ, khử trùng ở 121 0C trong 15 phút, đặt ống thạch đứng.
• Thuốc thử Kovac (có thể mua sẵn hoặc tự pha):
p-dimethyl aminobenzaldehyd 8 g
Etanol 760 ml
HCl đặc 160 ml
• Cấy vi khuẩn mới hoạt hoá (18-24 giờ) vào môi trường SIM, nuôi ở 300C trong 24 giờ.
• Kết quả: nếu phần trên của môi trường chuyển màu nâu là phản ứng IPA dương tính, nếu không là phản ứng âm tính.
• Sau đó nhỏ thêm thuốc thử Kovac vào và quan sát. Nếu trên mặt thạch xuất hiện màu đỏ đào là phản ứng Indol dương tính.

xx.jpg


Hình 3.11. Ví dụ minh hoạ phản ứng Indol dương tín
 
C

canhcutndk16a.

Virus
1. Vài nét lịch sử nghiên cứu của virus học
Ngay từ năm 1883 nhà khoa học người Đức Adolf Mayer khi nghiên cứu bệnh khảm cây thuốc lá đã nhận thấy bệnh này có thể lây nếu phun dịch ép lá cây bị bệnh sang cây lành, tuy nhiên ông không phát hiện được tác nhân gây bệnh.
N ăm 1884 Charles Chamberland đã sáng chế ra màng lọc bằng sứ để tách các vi khuẩn nhỏ nhất và vào năm 1892 nhà thực vật học người Nga Dimitri Ivanovski đã dùng màng lọc này để nghiên cứu bệnh khảm thuốc lá. Ông nhận thấy dịch ép lá cây bị bệnh đã cho qua màng lọc vẫn có khả năng nhiễm bệnh cho cây lành và cho rằng tác nhân gây bệnh có lẽ là vi khuẩn có kích thước nhỏ bé đến mức có thể đi qua màng lọc, hoặc có thể là độc tố do vi khuẩn tiết ra. Giả thuyết về độc tố qua màng lọc đã bị bác bỏ vào năm 1898 khi nhà khoa học người Hà Lan Martinus Beijerinck chứng minh được rằng tác nhân lây nhiễm là chất độc sống (Contagium vivum fluidum) và có thể nhân lên được. Ông tiến hành phun dịch ép lá cây bệnh cho qua lọc rồi phun lên cây và khi cây bị bệnh lại lấy dịch ép cho qua lọc để phun vào các cây khác. Qua nhiều lần phun đều gây được bệnh cho cây. Điều đó chứng tỏ tác nhân gây bệnh phải nhân lên được vì nếu là độc tố thì năng lực gây bệnh sẽ phải dần mất đi.

N ăm 1901 Walter Reed và cộng sự ở Cuba đã phát hiện tác nhân gây bệnh sốt vàng, cũng qua lọc. Tiếp sau đó các nhà khoa học khác phát hiện ra tác nhân gây bệnh dại và đậu mùa. Tác nhân gây bênh đậu mùa có kích thước lớn, không dễ qua màng lọc, do đó các tác nhân gây bệnh chỉ đơn giản gọi là virus.
cg.jpg

N ăm 1915 nhà vi khuẩn học người Anh Frederick Twort và năm 1917 nhà khoa học người Pháp Felix d'Hérelle đã phát hiện ra virus của vi khuẩn và đặt tên là Bacteriophage gọi tắt là phage.

N ăm 1935 nhà khoa học người Mỹ Wendell Stanley đã kết tinh được các hạt virus gây bệnh đốm thuốc lá (TMV). Rồi sau đó TMV và nhiều loại virus khác đều có thể quan sát được dưới kính hiển vi điện tử.

N hư vậy nhờ có kỹ thuật màng lọc đã đem lại khái niệm ban đầu về virus và sau đó nhờ có kính hiển vi điện tử đã có thể quan sát được hình dạng của virus, tìm hiểu được bản chất và chức năng của chúng.

N gày nay virus được coi là thực thể chưa có cấu tạo tế bào, có kích thước siêu nhỏ và có cấu tạo rất đơn giản, chỉ gồm một loại acid nucleic, được bao bởi vỏ protein. Muốn nhân lên virus phải nhờ bộ máy tổng hợp của tế bào, vì thế chúng là ký sinh nội bào bắt buộc.

V irus có khả năng gây bệnh ở mọi cơ thể sống từ vi khuẩn đến con người, là thủ phạm gây thiệt hại nặng nề cho ngành chăn nuôi, gây thất bát mùa màng và cản trở đối với ngành công nghiệp vi sinh vật.
Từ những thập kỷ cuối của thế kỷ XX trở lại đây ngày càng xuất hiện các dạng virus mới lạ ở người, động vật mà trước đó y học chưa hề biết tới, đe doạ mạng sống của con người. Sau HIV, SARS, Ebola, cúm A H5N1 sẽ còn bao nhiêu loại nữa sẽ xuất hiện để gây tai hoạ cho con người.

M ặt khác, do có cấu tạo đơn giản và có genom nhiều kiểu với cơ chế sao chép khác hẳn ở các cơ thể khác nên virus được chọn là mô hình lý tưởng để nghiên cứu nhiều cơ chế sinh học ở mức phân tử dẫn đến cuộc cách mạng sinh học cận đại: Sinh học phân tử, di truyền học phân tử. Vì những lý do trên việc nghiên cứu virus đã được đẩy mạnh và trở thành một ngành khoa học độc lập rất phát triển.
 
Last edited by a moderator:
C

canhcutndk16a.

2. Hình thái và cấu trúc của virus

2.1. Cấu tạo cơ bản:

Tất cả các virus đều có cấu tạo gồm hai thành phần cơ bản: lõi là acid nucleic (tức genom) và vỏ là protein gọi là capsid, bao bọc bên ngoài để bảo vệ acid nucleic. Phức hợp bao gồm acid nucleic và vỏ capsid gọi là nucleocapsid hay xét về thành phần hoá học thì gọi là nucleoprotein. Đối với virus ARN thì còn gọi là ribonucleoprotein
Genom của virus có thể là ADN hoặc ARN, chuỗi đơn hoặc chuỗi kép, trong khi genom của tế bào luôn là ADN chuỗi kép, và trong tế bào luôn chứa hai loại acid nucleic, ADN và ARN.

2.2. Vỏ capsid:

Capsid là vỏ protein được cấu tạo bởi các đơn vị hình thái gọi là capsome. Capsome lại được cấu tạo từ 5 hoặc 6 đơn vị cấu trúc gọi là protome. Protome có thể là monome (chỉ có một phân tử protein) hoặc polyme (có nhiều phân tử protein)
- Pentame (penton) có 5 protome nằm trên các đỉnh của khối đa diện, còn hexame (hexon) tạo thành các cạnh và bề mặt hình tam giác.
- Capsid có khả năng chịu nhiệt, pH và các yếu tố ngoại cảnh nên có chức năng bảo vệ lõi acid nucleic
- Trên mặt capsid chứa các thụ thể đặc hiệu, hay là các gai glicoprotein, giúp cho virus bám vào các thụ thể trên bề mặt tế bào. Đây cũng chính là các kháng nguyên (KN) kích thích cơ thể tạo đáp ứng miễn dịch (ĐƯMD).
- Vỏ capsid có kích thước và cách sắp xếp khác nhau khiến cho virus có hình dạng khác nhau. Có thể chia ra ba loại cấu trúc: đối xứng xoắn, đối xứng hình khối và cấu trúc phức tạp (Hình 1).
csi.jpg

Hình 1. Kích thước và hình thái của một số virus điển hình .Theo Presscott L. M. et al. , Microbiology. 6th ed. Intern. Ed. 2005.

2.2.1 Cấu trúc đối xứng xoắn:

Sở dĩ các virus có cấu trúc này là do capsome sắp xếp theo chiều xoắn của acid nucleic. Tuỳ loại mà có chiều dài, đường kính và chu kỳ lặp lại của các nucleocapsid khác nhau. Cấu trúc xoắn thường làm cho virus có dạng hình que hay hình sợi ví dụ virus đốm thuốc lá (MTV), dại (rhabdo), quai bị, sởi (paramyxo), cúm (orthomyxo). ở virus cúm các nucleocapsid được bao bởi vỏ ngoài nên khi quan sát dưới kính hiển virus điện tử thấy chúng có dạng cầu.

2.2.2 Cấu trúc đối xứng dạng khối đa diện 20 mặt

Ở các virus loại này, capsome sắp xếp tạo vỏ capsid hình khối đa diện với 20 mặt tam giác đều, có 30 cạnh và 12 đỉnh. Đỉnh là nơi gặp nhau của 5 cạnh thuộc loại này gồm các virus adeno, reo, herpes và picorna. Gọi là đối xứng vì khi so sánh sự sắp xếp của capsome theo trục. Ví dụ đối xứng bậc 2, bậc 3, bậc 5, vì khi ta xoay với 1 góc 1800 (bậc 2), 1200 (bậc 3) và 720 (bậc 5) thì thấy vẫn như cũ.

Các virus khác nhau có số lượng capsome khác nhau. Virus càng lớn, số lượng capsome càng nhiều. Dựa vào số lượng capsome trên mỗi cạnh có thể tính được tổng số capsome của vỏ capsid theo công thức sau:
N= 10(n-1)2+2
Trong đó N- tổng số capsome của vỏ capsid, n-số capsome trên mỗi cạnh.

2.2.3 Virus có cấu tạo phức tạp:

Một số virus có cấu tạo phức tạp, điển hình là phage và virus đậu mùa. Phage có cấu tạo gồm đầu hình khối đa diện, gắn với đuôi có cấu tạo đối xứng xoắn. Phage T chẵn (T2, T4, T6) có đuôi dài trông giống như tinh trùng, còn phage T lẻ (T3,T7) có đuôi ngắn, thậm chí có loại không có đuôi (?6, ?X174).
Virus đậu mùa có kích thước rất lớn, hình viên gạch. ở giữa là lõi lõm hai phía trông như quả tạ. Đối diện với hai mặt lõm là hai cấu trúc dạng thấu kính gọi là thể bên. Bao bọc lõi và hai thể bên là vỏ ngoài.
 
Last edited by a moderator:
C

canhcutndk16a.

2.3 Vỏ ngoài:

- Một số virus có vỏ ngoài (envelope) bao bọc vỏ capsid. Vỏ ngoài có nguồn gốc từ màng sinh chất của tế bào được virus cuốn theo khi nảy chồi. Vỏ ngoài có cấu tạo gồm 2 lớp lipid và protein.
- Lipid gồm phospholipid và glycolipid, hầu hết bắt nguồn từ màng sinh chất (trừ virus pox từ màng Golgi) với chức năng chính là ổn định cấu trúc của virus.
- Protein vỏ ngoài thường là glycoprotein cũng có nguồn gốc từ màng sinh chất, tuy nhiên trên mặt vỏ ngoài cũng có các glycoprotein do virus mã hóa được gắn trước vào các vị trí chuyên biệt trên màng sinh chất của tế bào, rồi về sau trở thành cấu trúc bề mặt của virus. Ví dụ các gai gp 120 của HIV hay hemaglutinin của virus cúm, chúng tương tác với receptor của tế bào để mở đầu sự xâm nhập của virus vào tế bào.
- Vỏ ngoài cũng có nguồn gốc từ màng nhân do virus lắp ráp và nẩy chồi qua màng nhân (virus herpes)
- Dưới tác động của một số yếu tố như dung môi hoà tan lipid, enzym, vỏ ngoài có thể bị biến tính và khi đó virus không còn khả năng gây nhiễm nữa.
 
C

canhcutndk16a.

2.4 Protein của virus :

2.4.1 Các phương pháp nghiên cứu protein virus

- Trước hết cần phải tách chúng khỏi tế bào. Điều này có thể thực hiện được nhờ hàng loạt các bước ly tâm tách, tiếp đó là ly tâm theo gradient nồng độ saccaroza.
- Ly tâm gradient nồng độ saccaroza thường cho kết quả thể hiện ở các băng (band) rất rõ nét tại các vị trí đặc thù trên gradient. Các băng này được dùng cho các nghiên cứu tiếp theo. Thông thường để nghiên cứu các virion đánh dấu đồng vị phóng xạ, người ta dùng hàng loạt kỹ thuật như điện di trên gel polyacrylamit, western Blotting (phản ứng với kháng thể).
- Vị trí protein của virus trong tế bào có thể xác định được nhờ kỹ thuật nhuộm phân biệt và miễn dịch huỳnh quang, cho kháng thể đơn dòng tương tác với epitop đặc hiệu của protein sau dịch mã thì dùng các chất ức chế proteaza và ức chế quá trình glycosyl hoá.
- Việc xác định trình tự gen và việc dự đoán acid amin sẽ giúp hiểu được cấu trúc và chức năng của chúng.

2.4.2 Các loại protein virus

- Protein virus được tổng hợp nhờ mARN của virus trên riboxom của tế bào. Tuỳ theo thời điểm tổng hợp mà được chia thành protein sớm và protein muộn. Protein sớm do gen sớm mã hoá, thường là enzym (protein không cấu trúc) còn protein muộn do gen muộn mã hoá, thường là protein cấu trúc tạo, nên vỏ capsid và vỏ ngoài.

*Protein không cấu trúc:

- Protein không cấu trúc có thể được gói vào trong virion, nhưng không phải là thành phần cấu tạo virion. Đây là các enzym tham gia vào quá trình nhân lên của virus, ví dụ enzym phiên mã ngược, proteaza và integraza của virus retro, timidinkinaza và ADN polymeraza của HSV.
- Protein không cấu trúc khác chỉ có mặt trong tế bào nhiễm mà không được đưa vào virion, bao gồm các protein tham gia vào quá trình điều hoà sao chép, phiên mã, dịch mã (ví dụ Tat của HIV, Protein màng trong của HSV, helicaza, protein gắn ADN...); protein ức chế quá trình tổng hợp acid nucleic và protein của tế bào chủ. Ngoài ra thuộc loại này còn có các protein gây ung thư do các oncogen mã hóa; các protein gây chuyển dạng tế bào, như kháng nguyên T lớn của SV-40 hoặc protein EBNA của virus Epstein.Barr. ở một số virus có protein không cấu trúc liên quan đến hoạt tính anti-apoptosis và anti-cytokin...
 
C

canhcutndk16a.

Protein cấu trúc
ad.jpg

Hình của phòng thí nghiệm Robert M Bock Đại học University of Wisconsin-Madison.

P rotein cấu trúc tham gia vào cấu tạo hạt virus, làm cho chúng có hình dạng, kích thước nhất định và bảo vệ genom của virus khỏi các điều kiện bất lợi. Protein cấu trúc bao gồm protein của nucleocapsid, protein nền (matrix), protein vỏ ngoài (Hình 3). Protein nucleocapsid có thể tự lắp ráp (ví dụ ở TMV, polio) hay lắp ráp với sự trợ giúp của một khung protein tạm thời, làm nhiệm vụ dàn giáo để tạo đầu phage hoặc cấu trúc khối đa diện, protein này chỉ tồn tại khi lắp ráp nucleocapsid và sẽ bị mất đi ở virus trưởng thành. Ví dụ capsid của virus polio có cấu tạo tương đối đơn giản, gồm 4 protein là VP1, VP2, VP3 và VP4. Các protein này tham gia lắp ráp tạo capsid thông qua một cấu trúc tiền chất (procapsid), bao gồm VPO (một protein tiền chất) và VP1, VP3. Protein VPO lại được cắt thành VP2 và VP4 khi vỏ capsid tiến hành lắp ráp với acid nucleic của nó. Capsid của virus reo phức tạp hơn nhiều. Đây là capsid trần có hai lớp vỏ. Protein capsid ngoài chức năng bảo vệ acid nucleic genom và lắp ráp để hình thành virion còn phải tương tác với acid nucleic genom trong suốt quá trình lắp ráp. Sự bao gói phân tử acid nucleic vào trong vùng xác định, cần phải có sự sắp xếp và nén genom lại và báo hiệu sự kết hợp với protein capsid đã lựa chọn, thông qua liên kết hóa học. Ví dụ protein N của virus rhabdo và protein NP của virus cúm là các protein có acid amin mang điện tích dương sẽ tương tác với acid nucleic mang điện tích âm, nên chúng sẽ hút nhau, tạo thuận lợi cho việc lắp ráp. Việc bọc gói sẽ trở nên phức tạp hơn khi virus có genom nhiều đoạn, ví dụ ở virus cúm có 8 đoạn ARN cần phải bọc gói trong cùng một vỏ capsid.
V ỏ ngoài bao quanh nucleocapsid được hình thành từ màng nhân, màng sinh chất hoặc màng lưới nội chất khi virus nảy chồi. Phía trong của vỏ ngoài là protein glycolipid.
P rotein nền là protein nằm phía trong, giữa vỏ capsid và vỏ ngoài, giữ mối liên kết giữa hai vỏ này. Chúng thường không được glycosyl hóa và có thể chứa các protein xuyên màng để làm neo, hoặc có thể liên kết với màng nhờ các vùng kỵ nước nằm trên bề mặt hoặc nhờ mối tương tác giữa protein của chúng với glycoprotein vỏ ngoài. ở HSV, khoảng không giữa vỏ ngoài và capsid là lớp vô định hình được xem như một lớp màng (tegument).
G lycoprotein ngoài của virus được neo vào vỏ nhờ các protein xuyên màng. Phần lớn chúng nằm nhô ra phía ngoài vỏ với một cái đuôi ngắn ở phía trong. Nhiều glycoprotein là monome, chúng ghép lại với nhau tạo thành những chiếc gai có thể quan sát được dưới kính hiển vi điện tử. ở các virus có vỏ ngoài, các gai này có chức năng kháng nguyên, ví dụ gai G ở virus dại, gai gp 120 ở HIV và gai HA ở virus cúm.
cả virus trần (ví dụ polio) và virus có vỏ ngoài các protien cấu trúc này sẽ tương tác với receptor trên bề mặt tế bào chủ để mở đầu cho quá trình gây nhiễm. Cơ thể chống trả lại thông qua đáp ứng miễn dịch. Dựa vào mối tương tác này để thiết kế vacxin chống virus.
cax.jpg

1 : Nucleocapsid
2: Protein nền
3: Vỏ ngoài
4: Cầu disulfur
5: Đuôi trong gắn protein nền
6: Kênh vận chuyển
7: Glycoprotein (gai phụ)
8: Protein vận chuyển màng
9: Glycoprotein vỏ ngoài

T ất cả các protein của virus đều được dịch mã từ mARN của virus. Các mARN này có thể
a)- được phiên mã từ genom ADN của virus (ví dụ HSV), hoặc
b)- từ mạch bổ sung với genom ARN âm (ví dụ virus cúm) hoặc
c)-chính là genom của virus ARN dương (ví dụ virus bại liệt) Protein của virus có thể được xử lý sau dịch mã. Lúc đầu tổng hợp một protein lớn (polyprotein) sau đó nhờ proteaza phân cắt để tạo các phân tử nhỏ (ví dụ polyprotein của virus polio, phức hợp gag-polymeraza của virus HIV). Chúng có thể được phosphoryl hóa. Mức độ phosphoryl hóa thường xác định mức độ chức năng của protein (ví dụ protein N và NS của virus rhabdo). S ự gắn gốc đường vào protien (glycosyl hoá) là gắn cả với N và O. Đối với nhiều protein virus (thường là glycoprotein vỏ ngoài) gốc đường có thể chiếm 70% trọng lượng protein. Các biến đổi sau dịch mã khác như myristyl hóa, acyl hoá và palmitoyl hóa cùng được tiến hành.
 
C

canhcutndk16a.

aq.jpg

Hình 4. Sơ đồ các họ và chi của phage. Theo Prescott L. M. et al., Microbiology 6th ed. Intern. Ed., 2005
at.jpg

Hình 5. Sơ đồ mô tả các họ và chi của virus thực vật. Theo Prescott L. M. et al. , Microbiology 6th ed. Intern ed. , 2005
ay.jpg

Hình 6. Sơ đồ miêu tả các họ và chi của virus ký sinh ở động vật không xương sống (RT chỉ virus chứa enzym phiên mã ngược). Theo Prescott L. M. et al., Microbiology 6th ed. Intern ed., 2005
 
C

canhcutndk16a.

2.4 Acid nucleic của virus

2.5.1 Các loại genom của virus

N hư trên đã nói, genom của virus rất đa dạng về cấu trúc, kích thước và thành phần nucleotid. Chúng có thể là ADN hoặc ARN, chuỗi đơn hoặc kép, thẳng hoặc khép vòng. Kích thước genom có thể từ 3500 nucleotid (ở phage nhỏ) đến 560.000 nucleotid (ở virus herpes). Các trình tự genom virus phải được đọc mã bởi tế bào chủ, cho nên các tín hiệu điều khiển phải được các yếu tố của tế bào chủ nhận biết. Các yếu tố này thường liên kết với protein virus. Do có kích thước nhỏ nên genom virus đã tiến hoá để sử dụng tối đa tiềm năng mã hóa của mình. Vì thế hiện tượng gen chồng lớp và hiện tượng cắt nối (splicing) mARN ở virus là rất phổ biến.
ad.jpg

Hình 7. Sơ đồ genom của virus ARN cho thấy sự phân bố của các gen mã hoá cho protein cấu trúc, protein không cấu trúc, cũng như các vùng không dịch mã UTR (unstranslated region). Theo J. Nicklin et al., Instant Notes in Microbiology, Bios Scientific Publisher, 1999.

Genom của virus được xác định dựa theo các thông số sau:
* Thành phần acid nucleic (ADN hay ARN).
* Kích thước genom, chuỗi đơn hay kép.
* Cấu trúc đầu chuỗi
* Trình tự nucleotid
* Khả năng mã hoá
* Các yếu tố điều hoà, promoter, enhancer và terminater
 
C

canhcutndk16a.

Một số đặc điểm của genom virus cần lưu ý:

* Genom ADN kép (ví dụ ở virus pox, herpes và adeno) thường có kích thước lớn nhất.
* Genom ADN kép khép vòng (siêu xoắn hoặc không siêu xoắn) thường thấy ở phage
* Genom ADN kép ở virus vaccinia có hai đầu khép kín
ADN đơn dạng thẳng (ví dụ virus parvo) có kích thước rất nhỏ.
Các ADN dạng thẳng thường có trình tự lặp lại ở đầu.
* Tất cả genom ARN kép đều phân đoạn (chứa một số đoạn không giống nhau, mang thông tin di truyền tách biệt).
* Genom ARN đơn được phân thành ARN dương (genom +) và ARN âm (genom -) dựa vào trình tự nucleotid của mARN.
Phần lớn genom ARN đơn đều không phân đoạn trừ virus orthomyxo (virus cúm).
* Virus retro có genom là hai phân tử ARN đơn giống nhau, nối với nhau ở đầu 5 nhờ cầu nối hydro.
* Virus đốm câyAlfalfa (AMV) có genom gồm 4 đoạn ARN đơn, dương, dạng thẳng, được gói vào 4 vỏ capsid khác nhau nên còn gọi là virus dị capsid (hetero-capsidic) để phân biệt với virus mà tất cả các đoạn đều được gói trong một hạt-virus đồng capsid (isocapsidic).
 
C

canhcutndk16a.

2.5.2 Phương pháp nghiên cứu

N hững tiến bộ về sinh học phân tử trong vài thập niên gần đây đã giúp cho việc nghiên cứu acid nucleic trở nên dễ dàng và nhanh chóng hơn. Hệ gen của các đại diện của hầu hết các họ virus đều được giải trình tự, các khung đọc mở của chúng đã được biết rõ, các sản phẩm của hệ gen đã được xác định tính chất. Điều đó cho phép có thể so sánh các trình tự đã biết trong ngân hàng gen với các trình tự đang nghiên cứu và so sánh với các trình tự của các sinh vật khác, nhân sơ và nhân thật, qua đó có thể thấy sự tương đồng cũng như sự tiến hoá trong sinh giới.
G en virus cũng có thể được tách dòng vào các vectơ khác nhau và được phân tích nhờ kỹ thuật phát sinh đột biến điểm định hướng (site-directed mutagenesis) và kỹ thuật phát sinh đột biến điểm đặc hiệu (site-specific mutagenesis) để nghiên cứu vai trò của các acid amin riêng biệt trong việc xác định cấu trúc và chức năng của protein.
V irus ADN thường được biểu hiện trên sơ đồ là một phân tử dạng thẳng với các vị trí enzym giới hạn nằm rải rác khắp genom. Có hàng chục enzym giới hạn đã được dùng để phân cắt ADN thành các đoạn nhỏ với trình tự nucleotid đặc thù. Mỗi genom ADN có một bản đồ enzym cắt giới hạn đặc trưng cho chúng. Điều này không thể có với genom ARN, trừ phi nhờ enzym phiên mã ngược tiến hành tổng hợp cADN từ ARN khuôn. Lúc đó cADN sẽ bị enzym giới hạn cắt.
A cid nucleic của virus có thể được đặc trưng bởi nhiệt độ nóng chảy (Tm), mật độ nổi trong gradient nồng độ xesi clorua (CsCl), giá trị S trong gradient nồng độ saccaroza, có hoặc không có khả năng gây nhiễm, sự mẫn cảm với nucleaza và sự xuất hiện dưới kính hiển vi điện tử

K ích thước genom thay đổi rất nhiều ở các virus khác nhau. Các genom nhỏ nhất (ví dụ Bactariophage MS2, Q) có kích thước 1x106 Da đủ để mã hóa cho 3-4 protein. Một số virus khác tận dụng tối đa không gian của genom bằng cách sử dụng các gen chồng lớp, tức là các gen gối lên nhau trên cùng khung đọc, chỉ khác nhau ở diểm khởi đầu hoặc kết thúc.
C ác genom của coliphage T chẵn, herpes, vaccinia có kích thước 1,6x108 Da có thể mã hóa cho 100 protein.
 
C

canhcutndk16a.

Genom ADN
* C ác virus ADN có kích thước rất nhỏ (như x 174, M13 hay parvo) thường có genom là ADN chuỗi đơn. Một số là ADN đơn, dạng thẳng, song một số khác lại khép vòng.
* H ầu hết virus ADN sử dụng ADN kép làm vật liệu di truyền. Một số chứa genom ADN kép dạng thẳng nhưng số khác lại chứa ADN kép dạng vòng. Phage lamda chứa ADN kép dạng thẳng nhưng có hai đầu dính là đoạn đơn bổ sung dài 12 nucleotid nên có thể bắt cặp để khép vòng.
* N goài các nucleotid thông thường, ở nhiều virus còn có các base đặc biệt, ví dụ phage T chẵn ký sinh ở E.coli mang 5 hydroxymetyl cytosin thay vì cytosin. Glucoza thường gắn vào nhóm hydroxymetyl.
* Ở virus ADN kép có kích thước lớn (ví dụ virus họ herpes) genom có cấu tạo khá phức tạp. Kích thước genom thay đổi, từ virus herpes simplex và varicella zoster (120 180kbp) đến virus cytomegalo và HHV-6 (180 230 kbp). ADN mã cho hơn 40 protein cấu trúc và hơn 40 protein không cấu trúc. Cấu trúc genom ít thay đổi giữa các thành viên trong họ nhưng chúng là nhóm duy nhất chứa các đồng phân (isomer) của cùng một phân tử ADN. Mỗi hạt chứa một đồng phân gồm hai đoạn nối với nhau bằng liên kết cộng hóa trị, đoạn dài duy nhất (UL) và đoạn ngắn duy nhất (US). Ở hai đầu mỗi đoạn lại có các đoạn ngắn lạp lại trái chiều. Các đoạn này khác nhau ở các hạt virus khác nhau, do đó làm cho genom thay đổi ít nhiều (lớn hoặc nhỏ hơn kích thước trung bình).
* G enom của virus adeno là dạng thẳng có kích thước 30 - 38 kbp nhỏ hơn genom của virus herpes. Mỗi virus chứa 30 40 gen. Genom có hai đầu lập lại trái chiều dài 100-180 kbp. Đoạn 50 base đầu tiên khá giống nhau ở các virus khác nhau và thường chứa nhiều cặp A-T. Điểm nổi bật của đoạn đầu phân tử ADN ở virus adeno là khi genom tách khỏi virion một mạch sẽ tạo vòng "panhandle" và oligome. Điều này liên tưởng đến phage , nhưng khác ở chỗ ADN của adeno không có đầu đơn. Ở mỗi đầu 5 của genom có gắn một protein 55 kDa. Protein này đóng vai trò quan trọng trong sao chép.
 
Top Bottom