M
minhkhac_94
Tiếp : Giải pt :
[tex]cos^8x+sin^8x=8(cos^{14} x+sin^{14} x)[/tex]
[TEX]AM-GM:[/TEX]
[TEX] cos^{14} x+\frac{1}{2^6} cos^2 x \ge 2 cos^8 x[/TEX]
[TEX] sin^{14} x+\frac{1}{2^6} sin^2 x \ge 2 sin^8 x [/TEX]
[TEX]\Rightarrow sin^{14} x + cos^{14} x \ge \frac14 (sin^2x + cos^2 x ) - \frac{1}{32} [/TEX](*)
Lại có:
[TEX]sin^{14}x + \frac{6}{2^7} = sin^{14}x + \frac{1}{2^7} + ....+ \frac{1}{2^7} \ge \frac{7 sin^2 x }{2^6}[/TEX]
Tương tự :
[TEX]cos^{14}x + \frac{6}{2^7} \ge \frac{7 cos^2 x }{2^6} [/TEX]
[TEX]\Rightarrow sin^{14}x+cos^{14}x \ge \frac{1}{2^6}[/TEX](*)(*)
Từ (*) và (*)(*) [TEX]\Rightarrow 8(sin^{14}x+cos^{14}x ) \ge sin^8 x + cos ^8 x[/TEX]
[TEX]"=" \Leftrightarrow sin x = cos x = \pm \frac{\sqrt{2}}{2}[/TEX]
Dùng Cauchy-schwarz cho lành
[TEX]8(cos^2x+sin^2x)(cos^14x+sin^14x) \geq 8(cos^8x+sin^8x)^2[/TEX]
và [TEX]cos^8x+sin^8x \geq \frac{1}{8}[/TEX]
[TEX]=> 8(cos^8x+sin^8x)^2 \ge cos^8x+sin^8x[/TEX]
[TEX]"=" <==> sin x = cos x =\pm \frac{\sqrt{2}}{2}[/TEX]