chỗ dấu = xảy ra hình như ko khớp với max nhỉĐặt a+1=x,b+1=y,c+1=z suy ra [tex]1\leq z\leq y\leq x\leq 2[/tex]
Khi đó A=[tex](x+y+z)(\frac{1}{x}+\frac{1}{y}+\frac{1}{z})=3+\frac{x}{y}+\frac{x}{z}+\frac{y}{z}+\frac{y}{z}+\frac{z}{x}+\frac{z}{y}[/tex]
Lại có [tex](1-\frac{x}{y})(1-\frac{y}{z})\geq 0\Rightarrow \frac{x}{y}+\frac{y}{z}\leq \frac{x}{z}+1[/tex]
[tex](1-\frac{z}{y})(1-\frac{y}{x})\geq 0\Rightarrow \frac{z}{y}+\frac{y}{x}\leq \frac{z}{x}+1[/tex]
[tex]\frac{x}{y}+\frac{y}{z}+\frac{z}{y}+\frac{y}{x}\leq \frac{x}{z}+\frac{z}{x}+2[/tex]
[tex]\frac{x}{y}+\frac{x}{z}+\frac{y}{z}+\frac{y}{z}+\frac{z}{x}+\frac{z}{y}\leq 2(\frac{x}{z}+\frac{z}{x})+2[/tex]
Đặt [tex]\frac{x}{z}=t[/tex] suy ra [tex]1\leq t\leq 2[/tex]
[tex]\frac{x}{z}+\frac{z}{x}=t+\frac{1}{y}=\frac{t^2+1}{t}=\frac{(2t-1)(t-2)}{2t}+\frac{5}{2}\leq \frac{5}{2}\\\Rightarrow A\leq 3+2.\frac{5}{2}+2=10[/tex]
Dấu = khi a=b=0,c=1
This is cú lừa =))))đề nó là vậy mà bạn
.....nhìn cái đề phía trên cùng với cách bạn làm thì ai cũng bị nhầm đề kaka
Attachments
Last edited by a moderator: