$\sum_{cyc} \dfrac{a^3}{b^2c+bc^2}
\\=\sum_{cyc} \dfrac{a^4}{abc(b+c)}
\\\geq \dfrac{(a^2+b^2+c^2)^4}{2abc(a+b+c)}
\\\geq \dfrac{(a+b+c)^4}{18abc(a+b+c)}
\\\geq \dfrac{27abc}{18abc}=\dfrac{3}{2}$
Chỉ đúng với $a+b+c=3$ thôi nhá ._.
Cho $a=b=c=2$ thì trái đất nổ tung ._.