Bai2: $(1002x+1001)^2 \geq 0$
$<=> (1001x+1002)^2 \geq 2003(1-x^2)$
$<=> 2002x+2004\geq 2\sqrt{2003}\sqrt{1-x^2}$
$<=> \frac{2002x+2004}{\sqrt{1-x^2}} \geq 2\sqrt{2003}$
$<=> \frac{2002x+2004}{\sqrt{1-x^2}}+2003 \geq 2\sqrt{2003} +2003$
Dau = $<=> x=\frac{-1001}{1002}$