Đặt $v'=\sin x, u=f(x)$ thì $v=-\cos x, u'=f'(x)$.
$$\begin{align*}1= \int_0^{\pi/2} \sin x \cdot f(x) \; dx= \int_0^{\pi/2} uv' & = [uv]_0^{\pi/2}- \int_0^{\pi/2} u'v, \\
& = \left [ -\cos x \cdot f(x) \right]_0^{\pi/2}+ \int_0^{\pi/2} \cos x \cdot f'(x) \; dx, \\
& = \cos 0 \cdot...