$a^2(b-c) \leq 0(b \leq c)$.
Do đó:
$Q= \leq b^2(c-b)+c^2(1-c) \leq \dfrac{1}{2}(\dfrac{b+b+2c-2b}{3})^3+c^2(1-c)=c^2(1-\dfrac{23}{27}c)$.
Mặt khác áp dụng tiếp tục AM-GM 3 số ta có:
$c^2(1-\dfrac{23}{27}c)=(\dfrac{54}{27})^2.\dfrac{23c}{54}.\dfrac{23c}{54}(1-\dfrac{23c}{27}) \leq ... \leq...