Vì abc=1 => a,b,c khác 0
=> $S=\frac{a^{2}}{a^{2}+2ba}+\frac{b^{2}}{b^{2}+2cb}+\frac{c^{2}}{c^{2}+2ac}\geq \frac{(a+b+c)^{2}}{a^{2}+b^{2}+c^{2}+2ab+2bc+2ca}=\frac{(a+b+c)^{2}}{(a+b+c)^{2}}=1$ (BĐT Svacxo)
Dấu "=" xảy ra $
\Leftrightarrow \left\{\begin{matrix}...