2. Theo bài ra ta có: $(x+y+1)xy=x^{2}+y^{2}$
$\Longleftrightarrow xy(x+y)=x^2+y^2-xy \ge \dfrac{1}{2}(x+y)^2 - \dfrac{1}{4}(x+y)^2=\dfrac{1}{4}(x+y)^2$
$\Longleftrightarrow xy \ge \dfrac{1}{4}(x+y)$
$\Longleftrightarrow 16x^3y^3 \ge xy(x+y)^2$
$\Longrightarrow 16x^3y^3(x^2+y^2-xy) \ge...