D
duynhan1


[TEX]x;y \in [0;1] , x \geq y[/TEX] Tìm max:
[TEX]x\sqrt{y} - y\sqrt{x} [/TEX]
[TEX]x\sqrt{y} - y\sqrt{x} [/TEX]
Last edited by a moderator:
[tex]A=x\sqrt{y} - y\sqrt{x}=\sqrt{xy}.(\sqrt{x}-\sqrt{y}) \le \frac{(\sqrt{xy}+\sqrt{x}-\sqrt{y})^2}{4}[/tex][TEX]x;y \in [0;1] , x \geq y[/TEX] Tìm max:
[TEX]A=x\sqrt{y} - y\sqrt{x} [/TEX]
[TEX]x;y \in [0;1] , x \geq y[/TEX] Tìm max:
[TEX]A=x\sqrt{y} - y\sqrt{x} [/TEX]
Cho [TEX]\frac{1}{a} + \frac{1}{b} + \frac{1}{c} =1 [/TEX]. Chứng minh :
[TEX]\frac{a^2}{a+bc} + \frac{b^2}{b+ac} + \frac{c^2}{c+ab} \geq \frac{a + b+ c}{4}[/TEX]
giup minh chung minh bdt:
2a+3b=5; CM 2a^2+3b^2>=5.
4.Cho [TEX]a,b,c >0[/TEX].
CMR:[TEX] \sum \frac{a^4}{b(b+c)^2} \geq \frac{a+b+c}{4}[/TEX]
1.Cho [TEX]a,b,c >0[/TEX]CMR:
[TEX]\sum \frac{a^4}{(a^2+b^2)(a+b)}[/TEX][TEX] \geq\frac{a+b+c}{4}[/TEX]
4.Cho [TEX]a,b,c >0[/TEX].
CMR:[TEX] \sum \frac{a^4}{b(b+c)^2} \geq \frac{a+b+c}{4}[/TEX]
2.Cho [TEX]a,b,c > 0[/TEX] và [TEX]a+b+c\leq\frac{3}{2}[/TEX]. CMR :
[TEX]\sum \frac{a^3}{bc} + \sum \frac{a}{b^2} \geq \frac{15}{2}[/TEX]
8. [TEX]\sum_{cyc} \frac{a^3}{a^2+ab+b^2} = \sum_{cyc} \frac{b^3}{a^2+ab+b^2}[/TEX]5. Với [TEX]a,b,c >0; 3bc-ac-ab=1[/TEX]
[TEX]CMR: a^3 b^3 c^3 + b^3 + c^3 \geq 3b^3 c^3[/TEX]
6. Cho [TEX]\frac{a^5}{b+c} + \frac{b^5}{a+c} + \frac{c^5}{a+b} = \frac{3}{2}[/TEX]
CM: [TEX]ab^2 + bc^2 + ca^2 \leq 3[/TEX]
7. Cho [TEX]a,b,c > 0 ; a+b+c \leq\frac{3}{2}[/TEX]
CM: [TEX]\sum \frac{c(ab+1)^2}{b^2(bc+1)} \geq\frac{15}{2}[/TEX]
8. Cho:
[TEX]a,b,c \in R[/TEX]
CM:
[TEX]\sum \frac{a^3}{a^2+ab+b^2} \geq \frac{a+b+c}{3}[/TEX]
9. [TEX]a,b,c > 0 ; a+b+c = \frac{3}{4}. CMR:[/TEX]
[TEX]\sum \sqrt[3]{a+3b} \leq 3[/TEX]
10. [TEX]x,y >0 [/TEX]. CM:
[TEX](1+x)(1+\frac{y}{x})(1+\frac{9}{\sqrt{y}})^2 \geq 256[/TEX]
6. Cho [TEX]\frac{a^5}{b+c} + \frac{b^5}{a+c} + \frac{c^5}{a+b} = \frac{3}{2}[/TEX]
CM: [TEX]ab^2 + bc^2 + ca^2 \leq 3[/TEX]
duynhan1; said:8. Cho
[TEX]a,b,c \in R[/TEX]
CM:
[TEX]\sum \frac{a^3}{a^2+ab+b^2} \geq \frac{a+b+c}{3}[/TEX]
10. [TEX]x,y >0 [/TEX]. CM:
[TEX](1+x)(1+\frac{y}{x})(1+\frac{9}{\sqrt{y}})^2 \geq 256[/TEX]