[Toán 10]Bdt

Q

quyenuy0241

[TEX]x;y \in [0;1] , x \geq y[/TEX] Tìm max:
[TEX]A=x\sqrt{y} - y\sqrt{x} [/TEX]
[tex]A=x\sqrt{y} - y\sqrt{x}=\sqrt{xy}.(\sqrt{x}-\sqrt{y}) \le \frac{(\sqrt{xy}+\sqrt{x}-\sqrt{y})^2}{4}[/tex]
Do [tex]x,y \in[0,1] \Rightarrow (\sqrt{x}-1)(\sqrt{y}+1) \le 0 \Leftrightarrow \sqrt{xy}+\sqrt{x}-\sqrt{y} \leq 1[/tex]
Nên [tex]Amax=\frac{1}{4}[/tex]
Dấu = xảy ra [tex]\left{\begin{\sqrt{xy}=\sqrt{x}-\sqrt{y}}\\{x=1[/tex] [tex]\Leftrightarrow \left{\begin{x=1}\\y=\frac{1}{4}[/tex]
 
Last edited by a moderator:
D

duynhan1

[TEX]x;y \in [0;1] , x \geq y[/TEX] Tìm max:
[TEX]A=x\sqrt{y} - y\sqrt{x} [/TEX]

Cách khác nè:
[TEX]A=\sqrt{xy}(\sqrt{x}-\sqrt{y}) \leq \sqrt{x} \frac{x}{4}[/TEX]
Do [TEX]x \in [0;1] \Rightarrow x \sqrt{x} \in [0;1][/TEX]
Do đó : [TEX]A \leq 4[/TEX]
[TEX]Max A=4 \Leftrightarrow x=1[/TEX] và [TEX]\sqrt{y} =\sqrt{x}-\sqrt{y} [/TEX]
[TEX]\Leftrightarrow x=1[/TEX] và [TEX]y=\frac{1}{4}[/TEX]
:)>-
 
D

duynhan1

Bai moi day

Cho [TEX]\frac{1}{a} + \frac{1}{b} + \frac{1}{c} =1 [/TEX]. Chứng minh :
[TEX]\frac{a^2}{a+bc} + \frac{b^2}{b+ac} + \frac{c^2}{c+ab} \geq \frac{a + b+ c}{4}[/TEX]
 
B

bigbang195

Cho [TEX]\frac{1}{a} + \frac{1}{b} + \frac{1}{c} =1 [/TEX]. Chứng minh :
[TEX]\frac{a^2}{a+bc} + \frac{b^2}{b+ac} + \frac{c^2}{c+ab} \geq \frac{a + b+ c}{4}[/TEX]

[TEX]\frac{a^2}{a+bc({\frac{1}{a}+\frac{1}{b}+\frac{1}{c})}}=\frac{a^3}{(a+b)(a+c)}[/TEX]

[TEX]\frac{a^3}{(a+b)(b+c)}+\frac{a+b}{8}+\frac{a+c}{8} \ge \frac{3a}{4}[/TEX]

[TEX]VT \ge \frac{3(a+b+c)}{4} -\frac{2(a+b+c)}{4}[/TEX]
 
Last edited by a moderator:
D

duynhan1

Thêm 1 bài nữa

Cho [TEX]a^2+b^2+c^2+d^2 = 1[/TEX]. CMR:
[TEX](x^2 +ax +b)^2 + (x^2+cx+d)^2 \leq (2x^2 + 1)^2 (\forall x \in R)[/TEX]
 
D

duynhan1

Một loạt bài BDT

1.Cho [TEX]a,b,c >0[/TEX]CMR:
[TEX]\sum \frac{a^4}{(a^2+b^2)(a+b)}[/TEX][TEX] \geq\frac{a+b+c}{4}[/TEX]

2.Cho [TEX]a,b,c > 0[/TEX] và [TEX]a+b+c\leq\frac{3}{2}[/TEX]. CMR :
[TEX]\sum \frac{a^3}{bc} + \sum \frac{a}{b^2} \geq \frac{15}{2}[/TEX]

3.Cho [TEX]a,b,c >0; a+b+c\leq\frac{3}{2} [/tex]
CMR: [TEX]\sum \sqrt[3]{a^3 + \frac{1}{a^3}} \geq\frac{3}{2} \sqrt[3]{65}[/TEX]

4.Cho [TEX]a,b,c >0[/TEX].
CMR:[TEX] \sum \frac{a^4}{b(b+c)^2} \geq \frac{a+b+c}{4}[/TEX]
 
R

rua_it

4.Cho [TEX]a,b,c >0[/TEX].
CMR:[TEX] \sum \frac{a^4}{b(b+c)^2} \geq \frac{a+b+c}{4}[/TEX]

[tex]Cauchy-schwarz \rightarrow (\sum \frac{a^2}{b+c})^2[/tex]

[tex]= (\sum \frac{a^2}{(b+c).\sqrt{b}}.\sqrt{b})^2 \leq (\sum \frac{a^4}{b.(b+c)^2}).(\sum a)=LHS.(\sum a)[/tex]

Do đó ta chỉ cần chứng minh: [tex](\sum \frac{a^2}{b+c})^2 \geq (\frac{\sum a}{2})^2[/tex]

Hay [tex]\sum \frac{a^2}{b+c} \geq \frac{\sum a}{2}(*)[/tex]

[tex]Schwarz \Rightarrow \sum \frac{a^2}{b+c} \geq \frac{(\sum a)^2}{2.(\sum a}=\frac{\sum a}{2}[/tex]

[tex]\Rightarrow (*) [/tex] Đúng

[tex]\Rightarrow LHS=\sum \frac{a^4}{b.(b+c)^2} \geq \frac{(\sum a)^2}{4.(\sum a)} =\frac{\sum a}{4}=RHS[/tex]

:(.
 
Last edited by a moderator:
D

dandoh221

1.Cho [TEX]a,b,c >0[/TEX]CMR:
[TEX]\sum \frac{a^4}{(a^2+b^2)(a+b)}[/TEX][TEX] \geq\frac{a+b+c}{4}[/TEX]
Ta thấy rằng
[TEX]\sum_{cyc} \frac{a^4}{(a^2+b^2)(a+b)} = \sum_{cyc} \frac{b^4}{(a^2+b^2)(a+b)}[/TEX]
nên[TEX] VT = \frac{1}{2} ( \sum_{cyc} \frac{a^4}{(a^2+b^2)(a+b)} + \sum_{cyc} \frac{b^4}{(a^2+b^2)(a+b)})[/TEX]
Đến đây sử dụng BDT [TEX]2(x^2+y^2) \ge (x+y)^2[/TEX] là OK
 
Last edited by a moderator:
B

bigbang195

1.Cho [TEX]a,b,c >0[/TEX]CMR:
[TEX]\sum \frac{a^4}{(a^2+b^2)(a+b)}[/TEX][TEX] \geq\frac{a+b+c}{4}[/TEX]

[TEX]a^3+b^3 \ge \frac{1}{2}(a+b)(a^2+b^2) [/TEX]
Vậy chỉ cần chứng minh
[TEX]\sum \frac{a^4}{b^3+c^3} \ge \frac{a+b+c}{2}[/TEX]

[TEX]\Leftrightarrow \sum (\frac{a^4}{b^3+c^3}-\frac{a}{2}) \ge 0[/TEX]
[TEX]\Leftrightarrow\sum \frac{a(2a^3-b^3-c^3)}{b^3+c^3} \ge 0[/TEX] đúng theo Chebyshev's
 
B

bigbang195

2.Cho [TEX]a,b,c > 0[/TEX] và [TEX]a+b+c\leq\frac{3}{2}[/TEX]. CMR :
[TEX]\sum \frac{a^3}{bc} + \sum \frac{a}{b^2} \geq \frac{15}{2}[/TEX]


[TEX]VT =\sum \frac{a^3}{bc}+\sum \frac{a}{4b^2} +\sum \frac{3a}{4b^2} [/TEX]
[TEX]\ge 6\sqrt[6]{\frac{1}{4^3}} +9\sqrt[3]{\frac{1}{4^3abc}[/TEX]

Sử dụng [TEX]abc \le \frac{1}{8}[/TEX] ta được đpcm !!!
 
D

duynhan1

Thêm vài bài nữa

5. Với [TEX]a,b,c >0; 3bc-ac-ab=1[/TEX]
[TEX]CMR: a^3 b^3 c^3 + b^3 + c^3 \geq 3b^3 c^3[/TEX]
6. Cho [TEX]\frac{a^5}{b+c} + \frac{b^5}{a+c} + \frac{c^5}{a+b} = \frac{3}{2}[/TEX]
CM: [TEX]ab^2 + bc^2 + ca^2 \leq 3[/TEX]
7. Cho [TEX]a,b,c > 0 ; a+b+c \leq\frac{3}{2}[/TEX]
CM: [TEX]\sum \frac{c(ab+1)^2}{b^2(bc+1)} \geq\frac{15}{2}[/TEX]
8. Cho:
[TEX]a,b,c >0[/TEX]
CM:
[TEX]\sum \frac{a^3}{a^2+ab+b^2} \geq \frac{a+b+c}{3}[/TEX]
9. [TEX]a,b,c > 0 ; a+b+c = \frac{3}{4}. CMR:[/TEX]
[TEX]\sum \sqrt[3]{a+3b} \leq 3[/TEX]
10. [TEX]x,y >0 [/TEX]. CM:
[TEX](1+x)(1+\frac{y}{x})(1+\frac{9}{\sqrt{y}})^2 \geq 256[/TEX]
 
Last edited by a moderator:
D

dandoh221

5. Với [TEX]a,b,c >0; 3bc-ac-ab=1[/TEX]
[TEX]CMR: a^3 b^3 c^3 + b^3 + c^3 \geq 3b^3 c^3[/TEX]
6. Cho [TEX]\frac{a^5}{b+c} + \frac{b^5}{a+c} + \frac{c^5}{a+b} = \frac{3}{2}[/TEX]
CM: [TEX]ab^2 + bc^2 + ca^2 \leq 3[/TEX]
7. Cho [TEX]a,b,c > 0 ; a+b+c \leq\frac{3}{2}[/TEX]
CM: [TEX]\sum \frac{c(ab+1)^2}{b^2(bc+1)} \geq\frac{15}{2}[/TEX]
8. Cho:
[TEX]a,b,c \in R[/TEX]
CM:
[TEX]\sum \frac{a^3}{a^2+ab+b^2} \geq \frac{a+b+c}{3}[/TEX]
9. [TEX]a,b,c > 0 ; a+b+c = \frac{3}{4}. CMR:[/TEX]
[TEX]\sum \sqrt[3]{a+3b} \leq 3[/TEX]
10. [TEX]x,y >0 [/TEX]. CM:
[TEX](1+x)(1+\frac{y}{x})(1+\frac{9}{\sqrt{y}})^2 \geq 256[/TEX]
8. [TEX]\sum_{cyc} \frac{a^3}{a^2+ab+b^2} = \sum_{cyc} \frac{b^3}{a^2+ab+b^2}[/TEX]
Nên BDT [TEX]\Leftrightarrow \sum \frac{(a+b)(a-b)^2}{a^2+ab+b^2} \ge 0[/TEX]
Không đúng nếu [TEX]a+b,b+c,c+a \le 0[/TEX] :|
9. Holder : [TEX]VT^3 \le (a+3b+b+3c+c+3a)(1+1+1)(1+1+1) = 27[/TEX]
Cũng có thể dùng AM-GM
 
B

bigbang195

6. Cho [TEX]\frac{a^5}{b+c} + \frac{b^5}{a+c} + \frac{c^5}{a+b} = \frac{3}{2}[/TEX]
CM: [TEX]ab^2 + bc^2 + ca^2 \leq 3[/TEX]

[TEX]\frac{3}{2} \ge \frac{(a^3+b^3+c^3)^2}{2(ab+bc+ac)}[/TEX]

hay [TEX]3(ab+bc+ac) \ge (a^3+b^3+c^3)^2[/TEX]

hay [TEX]a+b+c \ge a^3+b^3+c^3 [/TEX]
mặt khác
[TEX]\left{a^3+1+1 \ge 3a \\ b^3+1+1 \ge 3b \\ c^3+1+1 \ge 3c [/TEX]

ta được [TEX]a^3+b^3+c^3 \le 3[/TEX]
nên
[TEX]ab^2 + bc^2 + ca^2 \leq 3[/TEX]
 
Last edited by a moderator:
Top Bottom