Topic dành cho những bạn nào 94 năm nay thi đại học!!!!!! Ver.2

Status
Không mở trả lời sau này.
D

duynhan1

[tex]x,y<0\Rightarrow x+y<0 [/tex] thì sao. :D

Em thấy [tex]\sqrt{xy} [/tex] nên cứ lầm là đã có điều kiện [tex] x,\ y \ge 0 [/tex]
Điều kiện:
[tex] \left{ xy \ge 0 \\ \left[ x \not= 0 \\ y \not= 0 \right. [/tex]
Trường hợp 1: [tex] \left{ x > 0 \\ y >0 \right. [/tex] Giải như trên.
Trường hợp 2: [/tex] x = 0 \Rightarrow y=-12 [/tex] thỏa.
Trường hợp 3: [tex] y = 0 \Rightarrow x = 4 [/tex] ( không thỏa (2)) loại :-?
Trường hợp 4: [tex]\left{ x<0 \\ y<0 [/tex], khi đó dễ thấy (2) luôn đúng, và (1) tương đương với:
[tex] -y + 3 \sqrt{(-x)} \sqrt{(-y)} = 12- 3x \\ \Leftrightarrow ( 2 \sqrt{-y} +3 \sqrt{-x} )^2 = 12- 12x \\ \Leftrightarrow 2\sqrt{-y} + 3 \sqrt{-x} = \sqrt{12-12x} \ (do 12-12x>0) \\ \Leftrightarrow 2\sqrt{-y} = 2\sqrt{3-3x} - 3 \sqrt{-x} [/tex]
Hic, rút từ từ ra tới y rồi kết luận nghiệm ^_^.
 
M

mr_l0n3ly

giải thích dùm mình câu này nhé các bạn ;)

[TEX]sin^2x + sin^22x + sin^23x = 2[/TEX]

[TEX]\Leftrightarrow cos2x(cos4x + cos2x) = 0[/TEX]


theo mình thì hạ bậc thì sẽ đc là [TEX]\frac{1 - cos2x}{2} + \frac{1 - cos4x}{2} + \frac{1 - cos6x}{2} = 2[/TEX]

vậy tại sao lại = 0 ?

 
Last edited by a moderator:
M

maxqn

Câu này nghĩ chỉ hạ bậc ở 2 góc x với 3x thôi :)
--------------------------------------------------------------
 
S

sweetdream117

Mọi người giúp mình bài này với nhé ! cảm ơn trc'
Cho h/s [TEX]y=\frac{2x-1}{x+1}[/TEX]có đồ thị (C)
Tìm M thuộc (C) để tiếp tuyến tại M cắt 2 đường tiệm cận của (C) tại A,B sao cho [TEX]IA^2+IB^2=40[/TEX]với I là giao của 2 đường tiệm cận
 
N

ngobaochauvodich

Các bạn giúp mình 1 bài trong đề thi thử trường mình nha

[tex]x^3+x^2-15x+30[/tex] = [tex]4\sqrt[4]{27(x+1)}[/tex]
 
Q

quyenuy0241

Các bạn giúp mình 1 bài trong đề thi thử trường mình nha

[tex]x^3+x^2-15x+30[/tex] = [tex]4\sqrt[4]{27(x+1)}[/tex]

theo cô-si:
[tex]VP=4\sqrt[4]{3.3.3.(x+1)} \le 3+3+3+(x+1)=x+10[/tex] Dầu [TEX]=[/TEX] xảy ra khi [TEX]x=2[/TEX]

[tex](x-2)^2(x+5) \ge 0 \Leftrightarrow x^3+x^2-15x+30 \ge x+10 [/tex] Dấu =xẩy ra khi và chỉ khi [TEX]x=2[/TEX] (do [tex]x \ge -1 [/tex])

Vậy thì [tex]VT \ge x+10 \ge VP [/tex]

[tex]x=2[/tex] là nghiệm duy nhất.
 
D

duynhan1

giải PT: [tex]2012^x(\sqrt{x^2-2x+5}-x+1)=4024 .[/tex]
Đặt [tex] t = x-1 [/tex] kết hợp nhân lượng liên hợp thì ta được:
[tex] 2.2012 ^ t = \sqrt{t^2+4} + t [/tex]
[tex] \Leftrightarrow 2t \ln (2012) -\ln (\sqrt{t^2+4} + t) = 0 \text{ (do \sqrt{t^2+4}+t>|t|+t \ge 0 )} [/tex]
Xét hàm số: [tex] f(t) = 2\ln (2012) t - \ln (\sqrt{t^2+4} + t) [/tex]
[tex] f'(t) = 2 \ln(2012) - \frac{1}{t^2+4} >0 [/tex]
Suy ra hàm số f(t) đồng biến trên R. Và từ đó ta suy ra phương trình có nghiệm duy nhất [tex] t = 0 \Leftrightarrow x = 1 [/tex]
 
M

maxqn

Mọi người giúp mình bài này với nhé ! cảm ơn trc'
Cho h/s [TEX]y=\frac{2x-1}{x+1}[/TEX]có đồ thị (C)
Tìm M thuộc (C) để tiếp tuyến tại M cắt 2 đường tiệm cận của (C) tại A,B sao cho [TEX]IA^2+IB^2=40[/TEX]với I là giao của 2 đường tiệm cận

Gọi [TEX]M( m ; \frac{2m-1}{m+1}) \ \ (m \not= -1)[/TEX] là điểm cần tìm.
PT tiếp tuyến của (C) tại M:
[TEX](d): \frac{3(x-m)}{(m+1)^2} + \frac{2m-1}{m+1} [/TEX]
Gọi A, B lần lượt là giao điểm của d vs tiệm cận đứng và tiệm cận ngang của đồ thị.
Khi đó
[TEX]A(-1; \frac{2m-4}{m+1}) \ \ B(2m+1;2)[/TEX]
[TEX]IA^2 + IB^2 = 40 [/TEX]
[TEX]\Leftrightarrow 4(m+1)^4 - 40(m+1)^2 + 36 = 0[/TEX]
[TEX]\Leftrightarrow {\[ {m = 0 \vee m = -2} \\ { m= 2 \vee m = -4}[/TEX]
Vậy có 4 điểm thỏa mãn ....
 
M

mr_l0n3ly

Gọi A, B lần lượt là giao điểm của d vs tiệm cận đứng và tiệm cận ngang của đồ thị.
Khi đó
[TEX]A(-1; \frac{2m-4}{m+1}) \ \ B(2m+1;2)[/TEX]

chỗ này có phải bạn lần lượt thay 2 điểm -1 và 2 vào tt d đúng k ? sao mình tính nó k ra như bạn nhỉ

// tiện thể cho mình hỏi luôn, bài lượng giác phía bên trên của mình á

nếu chỉ hạ bậc ở cung x và cung 3x thì cung 2x sẽ xử lí tiếp ntn ?

mình học hơi yếu nên nhờ bạn giải thích kĩ dùm nha :)
 
N

nanglanh93

:D các bn giúp mình mí bài bất đẳng thức này nhé!
1) cho a,b,c> 0. Chứng minh rằng:

[TEX]\sqrt{\frac{a}{b+c}} +\sqrt{\frac{b}{c+a}} +\sqrt{\frac{c}{a+b}}+ \sqrt[3]{\frac{3(ab+bc+ac)}{a^2+b^2+c^2}} \geq \frac{7\sqrt{2}}{2}[/TEX]

2)Cho tam giác ABC nội tiếp(O). Đường phân giác trong góc A cắt BC tại A1,cắt (O) tại A2,các điểm B1, B2, C1, C2 đc định nghĩa tương tự A1, A2. CMR

[TEX]\frac{A1A2}{BA2+CA2}+ \frac{B1B2}{AB2+CB2}+ \frac{C1C2}{AC2+BC2}\geq \frac{3}{4} [/TEX]
 
M

maxqn

chỗ này có phải bạn lần lượt thay 2 điểm -1 và 2 vào tt d đúng k ? sao mình tính nó k ra như bạn nhỉ

// tiện thể cho mình hỏi luôn, bài lượng giác phía bên trên của mình á

nếu chỉ hạ bậc ở cung x và cung 3x thì cung 2x sẽ xử lí tiếp ntn ?

mình học hơi yếu nên nhờ bạn giải thích kĩ dùm nha :)

Uh thì thay vào mà :-?? K bik tính sai chỗ nào k nữa chứ :-ss
 
H

heo_smile_never_cry

:-?? K bik tính sai chỗ nào k nữa chứ :-ss

Bik sai chỗ nào rồi :))

Gọi [TEX] [TEX]A(-1; \frac{2m-4}{m+1}) \ \ B(2m+1;2)[/TEX]
[TEX]IA^2 + IB^2 = 40 [/TEX]
[TEX]\Leftrightarrow 4(m+1)^4 - 40(m+1)^2 + 36 = 0[/TEX]
[TEX]\Leftrightarrow {\[ {m = 0 \vee m = -2} \\ { m= 2 \vee m = -4}[/TEX]
Vậy có 4 điểm thỏa mãn ....

Tọa độ [TEX]A (-1;\frac{2m^2-2m-4}{(m+1)^2})[/TEX]
Đọan dưới vẫn đúng mà. :p

@Mr_Lonely: Chắc cậu cứ thế thay điểm A của Max vào chứ j :> :p
 
M

maxqn

Cái tử có nghiệm = -1 r mà heo. Rút gọn lun @_@
-----------------------------------------------------------
Hwa tính có cái thế x = -1 vô rút gọn đc, chắc điểm A này @_@
 
D

drthanhnam

Đặt [tex] t = x-1 [/tex] kết hợp nhân lượng liên hợp thì ta được:
[tex] 2.2012 ^ t = \sqrt{t^2+4} + t [/tex]
[tex] \Leftrightarrow 2t \ln (2012) -\ln (\sqrt{t^2+4} + t) = 0 \text{ (do \sqrt{t^2+4}+t>|t|+t \ge 0 )} [/tex]
Xét hàm số: [tex] f(t) = 2\ln (2012) t - \ln (\sqrt{t^2+4} + t) [/tex]
[tex] f'(t) = 2 \ln(2012) - \frac{1}{t^2+4} >0 [/tex]
Suy ra hàm số f(t) đồng biến trên R. Và từ đó ta suy ra phương trình có nghiệm duy nhất [tex] t = 0 \Leftrightarrow x = 1 [/tex]
Nhầm rồi. :D
Nhầm chỗ này:
[tex] 2.2012 ^ t = \sqrt{t^2+4} + t [/tex]
[tex] \Leftrightarrow 2t \ln (2012) -\ln (\sqrt{t^2+4} + t) = 0 \text{ (do \sqrt{t^2+4}+t>|t|+t \ge 0 )} [/tex]
Bạn thử thay t=0 vào xem:
2.0.n2012-ln2=0=> :))
Đáng ra khi lấy ln 2 vế ta phải được biểu thức:
[tex]ln2+t \ln (2012) -\ln (\sqrt{t^2+4} + t) = 0[/tex]
Dù sao thì nó vẫn ra :D
 
Last edited by a moderator:
S

suabo2010

Đề thi thử ĐH khối D THPT Hòn Gai

1. Phần chung:
Câu 1:
Cho hàm số : [tex]y=x^{3}-(m+1)x^{2}+(m^{2}+m-3)x-m^{2}+3[/tex]
Tìm m để đồ thị cắt Ox tại 3 điểm phân biệt trong đó có đúng 1 ngiệm có hoành độ âm.
Câu 2:
1. Giải pt:
[tex]1+sinxsin2x-cosxsin^{2}x=2cos^{2}(45^{\circ}-x)[/tex]

2.Giải pt:[tex]\sqrt{2x+3}+\sqrt{x+1}=3x+2\sqrt{2x^{2}+5x+3}-16[/tex]

Câu 3:
[tex]\int_{0}^{\frac{\Pi }{4}}\frac{xdx}{1+cos2x}[/tex]

Câu 4:
Cho lăng trụ tam giác đều ABC.A'B'C' có cạnh đáy là a và khoảng cách từ A đến mặt phẳng (A'BC) bằng a/2. Tính theo a thể tích khối lăng trụ ABC.A'B'C'.

Câu 5:
Tìm a để hệ sau có nghiệm:
[tex]\left\{\begin{matrix} \sqrt{x+1}+\sqrt{y+1}=a\\ x+y=2a+1 \end{matrix}\right.[/tex]

2. Phần riêng:
Câu 6.a:

1. Trong mặt phẳng tọa độ Oxy, cho đường tròn (C): [tex]x^{2}+y^{2}-4x-2y-1=0[/tex] và đường thẳng: x+y+1=0. Tìm những điểm M trên d sao cho từ M kẻ được đến (C) hai tiếp tuyến hợp với nhau 1 góc 90 độ.

2. Trong không gian tọa độ Oxyz, cho mp (P): 2x-y-5z+1=0 và 2 đường thẳng d1: [tex]\frac{x+1}{2}=\frac{y-1}{3}=\frac{z-2}{1}[/tex] và
d2:[tex]\frac{x-2}{1}=\frac{y+2}{5}=\frac{z}{-2}[/tex]. Viết pt đường thẳng d vuông góc với mp(P) đồng thời cắt cả 2 đường d1, d2.

Câu 7.a:
Tính tổng:
S= [tex]C^{0}_{2012}+2.2.C^{1}_{2012} +3.2^{2}. C^{2}_{2012} +4.2^{3}.C^{3}_{2012}+...+2013.2^{2012}.C^{2012}_{2012}[/tex]

Câu 6.b:
1. Trong mp tọa độ Oxy, cho elip (E): [tex]x^{2}+4y^{2}-4=0[/tex]. Tìm những điểm N trên (E) sao cho góc F1NF2 = 60 độ ( trong đó F1, F2 là tiêu điểm).
2. Trong không gian tọa độ Oxyz, cho mp (P): 2x-y+5z+1=0 và đường thẳng d: [tex]\frac{x+1}{2}=\frac{y-1}{3}=\frac{z-2}{1}[/tex]. Viết pt mp (Q) đi qua điểm A(-3;5;7), song song với d và vuông góc với (P).

Câu 7.b:
Giải bpt:
[tex]\frac{log_3(x+1)^{2}-log_4(x+1)^{3}}{x^{2}-5x-6}>0[/tex]
 
Last edited by a moderator:
C

canmongtay

:D các bn giúp mình mí bài bất đẳng thức này nhé!


2)Cho tam giác ABC nội tiếp(O). Đường phân giác trong góc A cắt BC tại A1,cắt (O) tại A2,các điểm B1, B2, C1, C2 đc định nghĩa tương tự A1, A2. CMR

[TEX]\frac{A1A2}{BA2+CA2}+ \frac{B1B2}{AB2+CB2}+ \frac{C1C2}{AC2+BC2}\geq \frac{3}{4} [/TEX]

Mình giúp bn bài hình thui...hì...bài bđt lằng nhằng wa chưa nghĩ ra...anh em nào ngĩ ra hướng rùi post lên để t tham khảo vs nhá:D
Hình thì bn tự vẽ ak;)
Đặt AB=b ; AC=c ; BC=a
Vì đường phân giác trong góc A cắt(O) tại A2 nên BA2=CA2. Do đó:
[TEX]\frac{A1A2}{BA2+CA2} = \frac{A1A2}{2CA2}[/TEX]
Dễ dàng chứng minh được:
t.g CA1A2 ~ t.g ACA2
[TEX]\Rightarrow \frac{A1A2}{CA2} = \frac{CA2}{AA2}[/TEX]
Tứ giác ABA2C nội tiếp, theo định lí Ptoleme có:
BC.AA2=AB.CA2+AC.BA2
[TEX]\Rightarrow BC.AA2=CA2.(AB+AC)[/TEX]
[TEX]\Rightarrow \frac{CA2}{AA2} = \frac{BC}{AB+AC} = \frac{a}{b+c}[/TEX]
Tóm lại:
[TEX]\frac{A1A2}{BA2+CA2} = \frac{a}{2(b+c)}[/TEX]
Tương tự ta có:
[TEX]\frac{B1B2}{AB2+CB2} = \frac{b}{2(a+c)}[/TEX]
[TEX]\frac{C1C2}{AC2+BC2} = \frac{c}{2(a+b)}[/TEX]
Do đó:
[TEX]\frac{A1A2}{BA2+CA2} + \frac{B1B2}{AB2+CB2} + \frac{C1C2}{AC2+BC2} = \frac{1}{2}.(\frac{a}{b+c} + \frac{b}{c+a} + \frac{c}{a+b}) \geq \frac{3}{4} [/TEX]
Đẳng thức xảy ra khi và chỉ khi tam giác ABC đều
 
Last edited by a moderator:
H

hardyboywwe

Mình góp vui vô đây 1 bài luyện thi đại học nhé!

Cho mặt cầu (S) có phương trình [tex]x^2[/tex] + [tex]y^2[/tex] +[tex] z^2[/tex] - 2x - 4y - 4z = 0

1.Xác định tâm và bán kính của mặt cầu?
2.Gọi A,B,C lần lượt là giao điểm (khác gốc tọa độ) của mặt cầu với các trục Ox,Oy,Oz.Viết phương trình mặt phẳng (ABC).
3.Gọi H là chân đường vuông góc hạ từ tâm mặt cầu đến mặt phẳng (ABC).Xác định tọa độ điểm H?
 
H

heo_smile_never_cry

Mình góp vui vô đây 1 bài luyện thi đại học nhé!

Cho mặt cầu (S) có phương trình [tex]x^2[/tex] + [tex]y^2[/tex] +[tex] z^2[/tex] - 2x - 4y - 4z = 0

1.Xác định tâm và bán kính của mặt cầu?
2.Gọi A,B,C lần lượt là giao điểm (khác gốc tọa độ) của mặt cầu với các trục Ox,Oy,Oz.Viết phương trình mặt phẳng (ABC).
3.Gọi H là chân đường vuông góc hạ từ tâm mặt cầu đến mặt phẳng (ABC).Xác định tọa độ điểm H?
a. I(1;2;2) ; R=3
b. A (a;0;0) ; B (0;b;0) ; C (0;0;c)
\Rightarrowptrmp (ABC) có dạng: [TEX]\frac{x}{a}+\frac{y}{b}+\frac{z}{c}=1[/TEX]
A,B,C thuộc mặt cầu (S) . Thay tọa độ A,B,C vào ptrmc => tọa độ A (2;0;0) ; B(0;4;0) ; C(0;0;2)
\Rightarrow [TEX](ABC): 2x+y+2z -4=0[/TEX]
c. Ptrđt (d) qua I và vgóc vs (ABC) có dạng: [TEX]x=1+2t ; y=2+t ; z=2+2t[/TEX]
H là giao của (S) và (d) =>[TEX]H(\frac{1}{9};\frac{14}{9};\frac{10}{9})[/TEX]

P/S: Bài này là thi Tốt nghiệp mà c ? :(
 
L

l94

2.Giải pt:[tex]\sqrt{2x+3}+\sqrt{x+1}=3x+2\sqrt{2x^{2}+5x+3}-16[/tex]
[tex] \sqrt{2x+3}+\sqrt{x+1}=(\sqrt{2x+3}+\sqrt{x+1})^2-20[/tex]
[tex]t=\sqrt{2x+3}+\sqrt{x+1}[/tex]
[tex]t^2-t-20=0[/tex]
đến đây thì ai cũng đc.
p/s: câu này dễ nên em mạo muội xí trước:-s
 
Status
Không mở trả lời sau này.
Top Bottom