Bài 1: CMR: Với mọi số nguyên tố p lớn hơn 5 thì p2016−1p2016−1p^{2016}-1 chia hết cho 60
1.$ p = 5k + 1 \\ \Rightarrow p \equiv 1 \; (mod\; 5) \\ \Leftrightarrow p^{2016} \equiv 1\; (mod\; 5) \\ \Leftrightarrow p^{2016} - 1 \equiv 0\; (mod\; 5) \\ \Rightarrow p^{2016} - 1 \vdots 5 \\ k = 3h \\ \Rightarrow p = 5 . 3h + 1 = 15h + 1 \\\Rightarrow p \equiv 1 \; (mod\; 3) \\ \Leftrightarrow p^{2016} \equiv 1\; (mod\; 3) \\ \Leftrightarrow p^{2016} - 1 \equiv 0\; (mod\; 3) \\ \Rightarrow p^{2016} - 1 \vdots 3 \\ k = 3h + 1 \\ \Rightarrow p = 5(3h + 1) + 1 = 15h + 5 + 1 = 15h + 6 \vdots 3 \Rightarrow hợp\; số \Rightarrow loại \\ k = 3h + 2 \\ \Rightarrow p = 5 . (3h + 2) + 1 = 15h + 10 + 1 = 15h + 11 \\ \Rightarrow p \equiv -1 \; (mod\; 3) \\ \Leftrightarrow p^{2016} \equiv 1\; (mod\; 3) \\ \Leftrightarrow p^{2016} - 1 \equiv 0\; (mod\; 3) \\ \Rightarrow p^{2016} - 1 \vdots 3 $
$ \\ k = 4m \\ \Rightarrow p = 5 . 4m + 1 = 20m + 1 \\ \Rightarrow p \equiv 1\; (mod\; 4) \\ \Leftrightarrow p^{2016} \equiv 1\; (mod\; 4) \\ \Leftrightarrow p^{2016} - 1 \equiv 0\; (mod\; 4) \\ \Rightarrow p^{2016} - 1 \vdots 4 \\ k = 4m + 1 \\ \Rightarrow p = 5(4m + 1) + 1 = 20m + 5 + 1 = 20m + 6 \vdots 2 \Rightarrow hợp\; số\Rightarrow loại \\ k = 4m + 2 \\ \Rightarrow p = 5 . (4m + 2) + 1 = 20m + 10 + 1 = 20m + 11 \\ \Rightarrow p \equiv -1\; (mod\; 4) \\ \Leftrightarrow p^{2016} \equiv 1\; (mod\; 4) \\ \Leftrightarrow p^{2016} - 1 \equiv 0\; (mod\; 4) \\ \Rightarrow p^{2016} - 1 \vdots 4 \\ k = 4m + 3 \\ \Rightarrow p = 5(4m + 3) + 1 = 20m + 15 + 1 = 20m + 16 \vdots 4 \Rightarrow hợp\; số\Rightarrow loại $
2.$ p = 5k + 2 \\ \Rightarrow p \equiv 2 \; (mod\; 5) \\ \Leftrightarrow p^2 \equiv 4\; (mod\; 5)\\ \Leftrightarrow p^2 \equiv -1\; (mod\; 5) \Leftrightarrow p^{2016} \equiv 1\; (mod\; 5) \\ \Leftrightarrow p^{2016} - 1 \equiv 0\; (mod\; 5) \\ \Rightarrow p^{2016} - 1 \vdots 5 \\ k = 3h \\ \Rightarrow p = 5 . 3h + 2 = 15h + 2 \\\Rightarrow p \equiv -1 \; (mod\; 3) \\ \Leftrightarrow p^{2016} \equiv 1\; (mod\; 3) \\ \Leftrightarrow p^{2016} - 1 \equiv 0\; (mod\; 3) \\ \Rightarrow p^{2016} - 1 \vdots 3 \\ k = 3h + 1 \\ \Rightarrow p = 5(3h + 1) + 2 = 15h + 5 + 2 = 15h + 7 \\\Rightarrow p \equiv 1 \; (mod\; 3) \\ \Leftrightarrow p^{2016} \equiv 1\; (mod\; 3) \\ \Leftrightarrow p^{2016} - 1 \equiv 0\; (mod\; 3) \\ \Rightarrow p^{2016} - 1 \vdots 3 \\ k = 3h + 2 \\ \Rightarrow p = 5 . (3h + 2) + 2 = 15h + 10 + 2 = 15h + 12 \vdots 3 \Rightarrow hợp\; số \Rightarrow loại $
$ \\ k = 4m \\ \Rightarrow p = 5 . 4m + 2 = 20m + 2 \vdots 2 \Rightarrow hợp\; số\Rightarrow loại \\ k = 4m + 1 \\ \Rightarrow p = 5(4m + 1) + 2 = 20m + 5 + 2 = 20m + 7 \\ \Rightarrow p \equiv -1\; (mod\; 4) \\ \Leftrightarrow p^{2016} \equiv 1\; (mod\; 4) \\ \Leftrightarrow p^{2016} - 1 \equiv 0\; (mod\; 4) \\ \Rightarrow p^{2016} - 1 \vdots 4\\ k = 4m + 2 \\ \Rightarrow p = 5 . (4m + 2) + 2 = 20m + 10 + 2 = 20m + 12 \vdots 4 \Rightarrow hợp\; số\Rightarrow loại \\ k = 4m + 3 \\ \Rightarrow p = 5(4m + 3) + 2 = 20m + 15 + 2 = 20m + 17 \\ \Rightarrow p \equiv 1\; (mod\; 4) \\ \Leftrightarrow p^{2016} \equiv 1\; (mod\; 4) \\ \Leftrightarrow p^{2016} - 1 \equiv 0\; (mod\; 4) \\ \Rightarrow p^{2016} - 1 \vdots 4 $
3.$ p = 5k + 3 \\ \Rightarrow p \equiv 3 \; (mod\; 5) \\ \Leftrightarrow p^2 \equiv 6 \; (mod\; 5) \\ \Leftrightarrow p^2 \equiv -1 \; (mod\; 5) \\ \Leftrightarrow p^{2016} \equiv 1\; (mod\; 5) \\ \Leftrightarrow p^{2016} - 1 \equiv 0\; (mod\; 5) \\ \Rightarrow p^{2016} - 1 \vdots 5 \\ k = 3h \\ \Rightarrow p = 5 . 3h + 3 = 15h + 3 \vdots 3 \Rightarrow hợp\; số \Rightarrow loại \\ \\ k = 3h + 1 \\ \Rightarrow p = 5(3h + 1) + 3 = 15h + 5 + 3 = 15h + 8 \Rightarrow p \equiv -1 \; (mod\; 3) \\ \Leftrightarrow p^{2016} \equiv 1\; (mod\; 3) \\ \Leftrightarrow p^{2016} - 1 \equiv 0\; (mod\; 3) \\ \Rightarrow p^{2016} - 1 \vdots 3 \\ k = 3h + 2 \\ \Rightarrow p = 5 . (3h + 2) + 3 = 15h + 10 + 3 = 15h + 13 \\ \Rightarrow p \equiv 1 \; (mod\; 3) \\ \Leftrightarrow p^{2016} \equiv 1\; (mod\; 3) \\ \Leftrightarrow p^{2016} - 1 \equiv 0\; (mod\; 3) \\ \Rightarrow p^{2016} - 1 \vdots 3 $
$ \\ k = 4m \\ \Rightarrow p = 5 . 4m + 3 = 20m + 3 \\ \Rightarrow p \equiv -1\; (mod\; 4) \\ \Leftrightarrow p^{2016} \equiv 1\; (mod\; 4) \\ \Leftrightarrow p^{2016} - 1 \equiv 0\; (mod\; 4) \\ \Rightarrow p^{2016} - 1 \vdots 4 \\ k = 4m + 1 \\ \Rightarrow p = 5(4m + 1) + 6 = 20m + 5 + 3 = 20m + 8 \vdots 4 \Rightarrow hợp\; số\Rightarrow loại \\ k = 4m + 2 \\ \Rightarrow p = 5 . (4m + 2) + 3 = 20m + 10 + 3 = 20m + 13 \\ \Rightarrow p \equiv 1\; (mod\; 4) \\ \Leftrightarrow p^{2016} \equiv 1\; (mod\; 4) \\ \Leftrightarrow p^{2016} - 1 \equiv 0\; (mod\; 4) \\ \Rightarrow p^{2016} - 1 \vdots 4 \\ k = 4m + 3 \\ \Rightarrow p = 5(4m + 3) + 2 = 20m + 15 + 2 = 20m + 17 \vdots 2 \Rightarrow hợp\; số\Rightarrow loại $
4.$ p = 5k + 4 \\ \Rightarrow p \equiv -1 \; (mod\; 5) \\ \Leftrightarrow p^{2016} \equiv 1\; (mod\; 5) \\ \Leftrightarrow p^{2016} - 1 \equiv 0\; (mod\; 5) \\ \Rightarrow p^{2016} - 1 \vdots 5 \\ k = 3h \\ \Rightarrow p = 5 . 3h + 4 = 15h + 4 \\\Rightarrow p \equiv 1 \; (mod\; 3) \\ \Leftrightarrow p^{2016} \equiv 1\; (mod\; 3) \\ \Leftrightarrow p^{2016} - 1 \equiv 0\; (mod\; 3) \\ \Rightarrow p^{2016} - 1 \vdots 3 \\ k = 3h + 1 \\ \Rightarrow p = 5(3h + 1) + 4 = 15h + 5 + 4 = 15h + 9 \vdots 3 \Rightarrow hợp\; số \Rightarrow loại \\ k = 3h + 2 \\ \Rightarrow p = 5 . (3h + 2) + 4 = 15h + 10 + 4 = 15h + 14 \\\Rightarrow p \equiv -1 \; (mod\; 3) \\ \Leftrightarrow p^{2016} \equiv 1\; (mod\; 3) \\ \Leftrightarrow p^{2016} - 1 \equiv 0\; (mod\; 3) \\ \Rightarrow p^{2016} - 1 \vdots 3 $
$ \\ k = 4m \\ \Rightarrow p = 5 . 4m + 4 = 20m + 4 \vdots 4 \Rightarrow hợp\; số\Rightarrow loại \\ k = 4m + 1 \\ \Rightarrow p = 5(4m + 1) + 4 = 20m + 5 + 4 = 20m + 9 \\ \Rightarrow p \equiv 1\; (mod\; 4) \\ \Leftrightarrow p^{2016} \equiv 1\; (mod\; 4) \\ \Leftrightarrow p^{2016} - 1 \equiv 0\; (mod\; 4) \\ \Rightarrow p^{2016} - 1 \vdots 4\\ k = 4m + . \\ \Rightarrow p = 5 . (4m + 2) + 4 = 20m + 10 + 4 = 20m + 14 \vdots 2 \Rightarrow hợp\; số\Rightarrow loại \\ k = 4m + 3 \\ \Rightarrow p = 5(4m + 3) + 4 = 20m + 15 + 4 = 20m + 19 \\ \Rightarrow p \equiv -1\; (mod\; 4) \\ \Leftrightarrow p^{2016} \equiv 1\; (mod\; 4) \\ \Leftrightarrow p^{2016} - 1 \equiv 0\; (mod\; 4) \\ \Rightarrow p^{2016} - 1 \vdots 4 $
Từ tất cả $ \Rightarrow p^{2016} - 1\vdots 5;p^{2016} - 1\vdots 4;p^{2016} - 1\vdots 5\ $ mà $(5;4;3) = 1 \Rightarrow p^{2016} - 1\vdots (5.4.3) \Leftrightarrow p^{2016} - 1 \vdots 60 $