Chắc suất Đại học top - Giữ chỗ ngay!! ĐĂNG BÀI NGAY để cùng trao đổi với các thành viên siêu nhiệt tình & dễ thương trên diễn đàn.
Chào mọi người, đây là chủ đề mình ấp ủ đã khá lâu, hi vọng nó có thể đem lại thêm sự mới mẻ về toán học đối với mỗi người đọc bài này nhé
Có lẽ các bạn đã từng biết đến quy tắc l’Hospital. Đó là quy tắc sử dụng đạo hàm để tính toán các giới hạn vô định [imath]\left(\dfrac{\infty}{\infty};\dfrac{0}{0}\right)[/imath]. Bạn có thể thấy nó giống từ hospital (bệnh viện); ta có thể nghĩ vui là khi nào gặp các bài toán tính giới hạn "bất thường", ta sẽ ném nó vào bệnh viện (sử dụng quy tắc l’Hospital)
Dạng đơn giản nhất của quy tắc l’Hospital có thể được phát biểu như sau:
Nếu [imath]\lim \limits_{x\to c} f(x)=\lim \limits_{x\to c} g(x)=0[/imath] hoặc [imath]\pm \infty[/imath] và [imath]\lim \limits_{x\to c} \dfrac{f'(x)}{g'(x)}[/imath] tồn tại thì [imath]\lim \limits_{x\to c} \dfrac{f(x)}{g(x)}=\lim \limits_{x\to c} \dfrac{f'(x)}{g'(x)}[/imath]
Ví dụ: [imath]\lim \limits_{x\to 0} \dfrac{e^x-1}{x} =\lim \limits_{x\to 0} \dfrac{e^x}{1}=1\:\: (\lim \limits_{x\to 0} (e^x-1)=0; \lim \limits_{x\to 0} x=0)[/imath]
Tuy nhiên, sáng tạo ra quy tắc này không phải là do ông Marquis de l’Hospital tìm ra, mà là được ông Johann Bernoulli phát hiện ra. Vì sao do ông này khám phá ra mà lại tên ông khác nhỉ? Ta hãy cùng tìm hiểu nhé.
Johann xuất thân từ một gia đình không có truyền thống Toán học hay Khoa học. Trong thời gian nghiên cứu y học ở trường đại học Basel, ông được người anh cả là Jacob (giáo sư Toán ở đại học Basel) ngầm dạy toán cho và chẳng mấy chốc ông đã ngang tài với anh trai mình, có thể tự nhiên cứu Toán học, đặc biệt là lý thuyết và kỹ thuật về phép tính vi tích phân.
Khoảng giữa năm 1694, trong một lần tới Paris Johann Bernoulli làm quen với Hầu tước Marquis de l’Hôpital - một trong những nhà toán học Pháp xuất chúng đương thời. Nhận thấy tài năng của Bernoulli trẻ tuổi, ông đã trả thù lao hậu hĩnh để thuê Johann dạy mình những bí mật của phép tính vi phân và tích phân. Vì cần tiền nên khi rời khỏi Paris ông vẫn tiếp tục gửi bài tới cho Hầu tước và trong đó có quy tắc l’Hôpital. Năm 1696, Hầu tước de L’Hôpital, với sự thỏa thuận của Johann Bernoulli, công bố qui tắc này trong cuốn sách của ông mang tên Analyse des Infiniment Petits pour l’Intelligence des Lignes Courbes (Giải tích các vô cùng nhỏ để hiểu các đường cong). Mãi sau khi Marquis mất vào năm 1704, Bernoulli mới đòi lại được một chút những gì đã mất bằng cách công bố nhiều kết quả của mình, trong đó có quy tắc l’Hospital.
Ngoài ra, trong lịch sử Toán học, dòng họ Bernoulli có sự đóng góp rất lớn, cho nhiều lĩnh vực khác nhau, liên tục trong một thời gian dài. Trong hai thế kỷ 17 và 18, gia đình Bernoulli đã mang lại ít nhất là tám nhà Toán học tên tuổi, trong số ấy có ba người có ảnh hưởng nổi trội nhất và định hình nhiều lĩnh vực của toán học trong suốt hai thế kỷ này là Jacob Bernoulli (1654 – 1705), Johann Bernoulli (1667 –1748) và Daniel Bernoulli (1700 – 1782; con trai Johann Bernoulli).
Vậy là đến đây chúng ta đã trả lời được câu hỏi trên rồi nè. Nếu các bạn có biết một câu chuyện thú vị hay muốn tìm hiểu về một nhà Toán học nào đó, hãy cùng nhau chia sẻ dưới topic này nhé <3.
Bonus: Bất đẳng thức Bernoulli mà các bạn hay dùng do ai tìm ra nhỉ
Có lẽ các bạn đã từng biết đến quy tắc l’Hospital. Đó là quy tắc sử dụng đạo hàm để tính toán các giới hạn vô định [imath]\left(\dfrac{\infty}{\infty};\dfrac{0}{0}\right)[/imath]. Bạn có thể thấy nó giống từ hospital (bệnh viện); ta có thể nghĩ vui là khi nào gặp các bài toán tính giới hạn "bất thường", ta sẽ ném nó vào bệnh viện (sử dụng quy tắc l’Hospital)
Dạng đơn giản nhất của quy tắc l’Hospital có thể được phát biểu như sau:
Nếu [imath]\lim \limits_{x\to c} f(x)=\lim \limits_{x\to c} g(x)=0[/imath] hoặc [imath]\pm \infty[/imath] và [imath]\lim \limits_{x\to c} \dfrac{f'(x)}{g'(x)}[/imath] tồn tại thì [imath]\lim \limits_{x\to c} \dfrac{f(x)}{g(x)}=\lim \limits_{x\to c} \dfrac{f'(x)}{g'(x)}[/imath]
Ví dụ: [imath]\lim \limits_{x\to 0} \dfrac{e^x-1}{x} =\lim \limits_{x\to 0} \dfrac{e^x}{1}=1\:\: (\lim \limits_{x\to 0} (e^x-1)=0; \lim \limits_{x\to 0} x=0)[/imath]
Tuy nhiên, sáng tạo ra quy tắc này không phải là do ông Marquis de l’Hospital tìm ra, mà là được ông Johann Bernoulli phát hiện ra. Vì sao do ông này khám phá ra mà lại tên ông khác nhỉ? Ta hãy cùng tìm hiểu nhé.
Johann xuất thân từ một gia đình không có truyền thống Toán học hay Khoa học. Trong thời gian nghiên cứu y học ở trường đại học Basel, ông được người anh cả là Jacob (giáo sư Toán ở đại học Basel) ngầm dạy toán cho và chẳng mấy chốc ông đã ngang tài với anh trai mình, có thể tự nhiên cứu Toán học, đặc biệt là lý thuyết và kỹ thuật về phép tính vi tích phân.
Khoảng giữa năm 1694, trong một lần tới Paris Johann Bernoulli làm quen với Hầu tước Marquis de l’Hôpital - một trong những nhà toán học Pháp xuất chúng đương thời. Nhận thấy tài năng của Bernoulli trẻ tuổi, ông đã trả thù lao hậu hĩnh để thuê Johann dạy mình những bí mật của phép tính vi phân và tích phân. Vì cần tiền nên khi rời khỏi Paris ông vẫn tiếp tục gửi bài tới cho Hầu tước và trong đó có quy tắc l’Hôpital. Năm 1696, Hầu tước de L’Hôpital, với sự thỏa thuận của Johann Bernoulli, công bố qui tắc này trong cuốn sách của ông mang tên Analyse des Infiniment Petits pour l’Intelligence des Lignes Courbes (Giải tích các vô cùng nhỏ để hiểu các đường cong). Mãi sau khi Marquis mất vào năm 1704, Bernoulli mới đòi lại được một chút những gì đã mất bằng cách công bố nhiều kết quả của mình, trong đó có quy tắc l’Hospital.
Ngoài ra, trong lịch sử Toán học, dòng họ Bernoulli có sự đóng góp rất lớn, cho nhiều lĩnh vực khác nhau, liên tục trong một thời gian dài. Trong hai thế kỷ 17 và 18, gia đình Bernoulli đã mang lại ít nhất là tám nhà Toán học tên tuổi, trong số ấy có ba người có ảnh hưởng nổi trội nhất và định hình nhiều lĩnh vực của toán học trong suốt hai thế kỷ này là Jacob Bernoulli (1654 – 1705), Johann Bernoulli (1667 –1748) và Daniel Bernoulli (1700 – 1782; con trai Johann Bernoulli).
Vậy là đến đây chúng ta đã trả lời được câu hỏi trên rồi nè. Nếu các bạn có biết một câu chuyện thú vị hay muốn tìm hiểu về một nhà Toán học nào đó, hãy cùng nhau chia sẻ dưới topic này nhé <3.
Bonus: Bất đẳng thức Bernoulli mà các bạn hay dùng do ai tìm ra nhỉ
[imath](1+x)^r\ge 1+rx[/imath] với mọi số nguyên [imath]r\ge 0[/imath] và với mọi số thực [imath]x>-1[/imath]
Last edited: