K
khanh_ndd
với [TEX]0<x,y,z<1[/TEX] thì.... :khi:----------------------------------------[TEX]x+y+z = xyz \rightarrow \sum \frac{1}{xy} = 1[/TEX]
[TEX]P = \sum \frac{(x-1)+(y-1)}{x^2} - \sum \frac{1}{x} = \sum (x-1)(\frac{1}{x^2}+\frac{1}{z^2}) - \sum \frac{1}{x} \geq \sum \frac{2(x-1)}{xz} - \sum \frac{1}{x} = \sum \frac{1}{x} - 2 \geq \sqrt{3\sum \frac{1}{xy}}-2 \geq \sqrt{3} - 2[/TEX]
[TEX]"=" \leftrightarrow x = y = z = \sqrt{3}[/TEX][TEX] \ x,y,z>0 \ and \ \sum x=xyz. Min: \ P= \frac{y-2}{x^2}+ \frac{z-2}{y^2}+\frac{x-2}{z^2}[/TEX]![]()
![]()