0
01263812493
Câu 5 đề thi thử THPT chuyên ngoại ngữ
cho [TEX] \left{x,y,z>0\\{x^2+y^2+z^2=1}.\text{ Tim min } A=\sum\frac{x^2y^2}{z^2}[/TEX]
[TEX]\blue A=\frac{x^2y^2}{z^2}+ \frac{y^2z^2}{x^2} + \frac{z^2x^2}{y^2}=(\frac{xy}{z})^2+ (\frac{yz}{x})^2+ (\frac{zx}{y})^2 \geq x^2+y^2+z^2=1[/TEX]
Cách khác:[TEX]Q=\sqrt{2x^2+2x+1}+\sqrt{2x^2-4x+4}[/TEX]
\Leftrightarrow[TEX]Q=\sqrt{(x+1)^2+x^2}+\sqrt{(x-2)^2+x^2}[/TEX]
[TEX]Q \geq |x+1| +|2-x| \geq3[/TEX]
Dấu = xảy ra \Leftrightarrow x=0
[TEX]\blue Q\sqrt{2}=\sqrt{(2x+1)^2+1}+\sqrt{(2-2x)^2+4} \geq \sqrt{(2x+1+2-2x)^2+(1+2)^2}=3\sqrt{2}[/TEX]
[TEX]\blue \rightarrow Q \geq 3 \leftrightarrow x=0[/TEX]