D
dungnhi
[TEX]4/{\rm{ }}2.\log _6 (\sqrt[4]{x} + \sqrt[8]{x}) = \log _4 \sqrt x [/TEX]
[TEX]6/\left\{ {_{\left( {2y^2 - y + 12} \right).3^x = 81y}^{x + \log _3 y = 3} } \right.[/TEX]
mọi người tham gia ủng hộ cho dzui....................
thank...........................................................................................................
.........................
4/[tex]{\rm{ }}2.\log _6 (\sqrt[4]{x} + \sqrt[8]{x}) = \log _4 \sqrt x [/TEX]
đk [tex] x>0[/tex]
Đặt [tex] \sqrt[8]x =t , t>0 [/tex] Khi đó:
[tex] 2log_6(t+t^2)=log_4t^4[/tex]
[tex] <->log_6t(t+1)=log_2t=log_6t.log_26[/tex]
[tex]<--> log_tt(1+t)=log_26[/tex]
[tex]<--> log_t(1+t)=log_23[/tex]
[tex]<--> 3^{log_2t}=1+t[/tex]
lại đặt [tex] log_2t=a-->2^a=t--> 3^a=1+2^a-->a=1[/tex]
6/ [tex] 3^x(2y^2-y+12)=81y[/tex]
[tex]<-> log_3{3^x(2y^2-y+12)}=log_381y=4+log_3y[/tex]
[tex] <--> 3-x=log_3{(2y^2-y+12)}-log_3y-1=log_3(\frac{2y^2-y+12}{3y})=log_3y[/tex]