tính khoảng cách giữa 2 đường thẳng

Thảo luận trong 'Chuyên đề 6: Hình học giải tích trong KG' bắt đầu bởi minhtriet12345, 20 Tháng mười hai 2012.

Lượt xem: 510

  1. [TẶNG BẠN] TRỌN BỘ Bí kíp học tốt 08 môn học. Click ngay để nhận!


    Bạn đang TÌM HIỂU về nội dung bên dưới? NẾU CHƯA HIỂU RÕ hãy ĐĂNG NHẬP NGAY để được HỖ TRỢ TỐT NHẤT. Hoàn toàn miễn phí!

    Chóp SABC đáy ABC là tam giác vuông cân A,AB=a,góc giữa các cạnh bên và mặt đáy bằng 60 độ.Tính khoảng cách giữa 2 đường thẳng AB và SC theo a?
     
  2. [​IMG]

    Gợi ý cách làm

    cách 1

    Từ C kẻ CD // AB. Tứ giác ACDB là hình vuông cạnh là a

    vậy d(AB, SC) = d(A, SCD)

    gọi H là trung điểm CB thì H là tâm đường tròn ngoại tiếp nên SH chính là đường cao của hình S.ABCD hay S.ABC

    tam giác SBC là tam giác đều vì SH vừa là đường cao vừa là trung tuyến và góc SBC = SCB = 60. Từ đó tính được BC,SH, SA,SB,SC, SD

    [laTEX]d(A,(SCD)) = \frac{3V_{SAD}}{S_{SCD}} = \frac{3V_{S.ACDB}}{2S_{SCD}}[/laTEX]
    cách 2 lập trục tọa độ lấy H là tâm O (0,0,0)
     
  3. hjx

    hjx...................e ko hiểu chỗ đường cao cho lắm.tại sao SH lại là đường cao của hình chóp z a?.trong khi chả có dẫn chứng nào cho thấy SH vuông góc zới ABCD cả
     
    Last edited by a moderator: 20 Tháng mười hai 2012


  4. các cạnh bên tạo với đáy cùng 1 góc thì chân đường cao trùng với tâm đường tròn ngoại tiếp của đáy
     
  5. Có thể gắn vào hệ trục tọa độ Oxyz vào rồi dùng công thức:

    [TEX]d_{(AB; SC)} = \frac{|[AB ; SC] . AS|}{[AB; SC][/TEX] (cái này là vectơ nhé ^^!)

    Còn bài làm trên, SH là đường cao thì bạn ấy có nói rõ vì sao rồi mà ^^.
     
Chú ý: Trả lời bài viết tuân thủ NỘI QUY. Xin cảm ơn!

Draft saved Draft deleted

CHIA SẺ TRANG NÀY