Thanh thiện
[imath]\left(\dfrac{1}{\sqrt{x}}+\dfrac{1}{\sqrt{y}}\right).\dfrac{2}{\sqrt{x}+\sqrt{y}}+\dfrac{1}x+\dfrac{1}y[/imath]
[imath]=\dfrac{\sqrt{x}+\sqrt{y}}{\sqrt{xy}}.\dfrac{2}{\sqrt{x}+\sqrt{y}}+\dfrac{1}x+\dfrac{1}y=\dfrac{2}{\sqrt{xy}}+\dfrac{1}x+\dfrac{1}y=\left(\dfrac{1}{\sqrt{x}}+\dfrac{1}{\sqrt{y}}\right)^2[/imath]
[imath]\dfrac{\sqrt{x^3}+\sqrt{y^3}+y\sqrt{x}+x\sqrt{y}}{\sqrt{xy^3}+\sqrt{x^3y}}=\dfrac{x(\sqrt{x}+\sqrt{y})+y(\sqrt{x}+\sqrt{y})}{\sqrt{xy}(x+y)}=\dfrac{\sqrt{x}+\sqrt{y}}{\sqrt{xy}}=\dfrac{1}{\sqrt{x}}+\dfrac{1}{\sqrt{y}}[/imath]
VT= [imath]\left(\dfrac{1}{\sqrt{x}}+\dfrac{1}{\sqrt{y}}\right)^2:\left(\dfrac{1}{\sqrt{x}}+\dfrac{1}{\sqrt{y}}\right)=\dfrac{1}{\sqrt{x}}+\dfrac{1}{\sqrt{y}}=\sqrt5[/imath]
[imath]\Rightarrow \dfrac{\sqrt{x}+\sqrt{y}}{\sqrt{xy}}=\sqrt5\Rightarrow \sqrt{x}+\sqrt{y}=5[/imath] (xy=1)
[imath]\Rightarrow x+y+2\sqrt{xy}=5\Rightarrow x+y=3[/imath]
[imath]P=x^2+y^2=(x+y)^2-2xy=3^2-2=7[/imath]
Có gì khúc mắc em hỏi lại nhé
Ngoài ra em xem thêm tại