[tex]\dfrac{1}{101.200}-\dfrac{1}{101.99}-\dfrac{1}{99.97}-\dfrac{1}{97.95}-...-\dfrac{1}{7.5}-\dfrac{1}{5.3}-\dfrac{1}{3.1}\\=\dfrac{1}{101.200}-\dfrac{1}{2}\left ( \dfrac{2}{1.3}+\dfrac{2}{3.5}+\dfrac{2}{5.7}+...+\dfrac{2}{95.97}+\dfrac{2}{97.99}+\dfrac{2}{99.101} \right )\\=\dfrac{1}{101.200}-\dfrac{1}{2}\left ( 1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{95}-\dfrac{1}{97}+\dfrac{1}{97}-\dfrac{1}{99}+\dfrac{1}{99}-\dfrac{1}{101} \right )\\=\dfrac{1}{101.200}-\dfrac{1}{2}\left ( 1-\dfrac{1}{101} \right )\\=\dfrac{1}{101.200}-\dfrac{1}{2}.\dfrac{100}{101}=\dfrac{1}{101.200}-\dfrac{100}{101.2}\\=\dfrac{1-10000}{101.200}=\dfrac{-9999}{20200}=\dfrac{-99}{200}[/tex]