N
ngtgt97
\[\begin{array}{l}$x+\sqrt{13-x^2}+x\sqrt{13-x^2}=11$
Đặt $\sqrt{13-x^2}=a$
$\Rightarrow$ Ta có hệ PT $\left\{ \begin{array}{l} x + a + xa = 11 \\ {x^2} + {a^2} = 13 \end{array} \right.$
đến đây chắc là được rồi
\left\{ \begin{array}{l}
x + a + xa = 11\\
{x^2} + {a^2} = 13
\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}
(a + 1)x = 11 - a\\
{x^2} + {a^2} = 13
\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}
x = \dfrac{{11 - a}}{{a + 1}}\\
\dfrac{{{a^2} - 22a + 121}}{{{{(a + 1)}^2}}} + {a^2} = 13(1)
\end{array} \right.\\
(1) \Leftrightarrow {a^4} + 2{a^3} - 11{a^2} - 48a + 108 = 0\\
\Leftrightarrow (a - 2)(a - 3)({a^2} + 7a + 18) = 0\\
\Leftrightarrow \left[ \begin{array}{l}
a = 2\\
a = 3
\end{array} \right. \Rightarrow \left[ \begin{array}{l}
\sqrt {13 - {x^2}} = 2\\
\sqrt {13 - {x^2}} = 3
\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}
{x^2} = 9\\
{x^2} = 4
\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}
x = \pm 3\\
{x^2} = \pm 4
\end{array} \right.\\
13 - {x^2} \ge 0 \Leftrightarrow - \sqrt {13} \le x \le \sqrt {13} \\
\Rightarrow x = \pm 3
\end{array}\]
Last edited by a moderator: