giải hệ phương trình sau:
(1) x^2+xy+y^2=19(x-y)^2
(2)x^2-xy+y^2=7(x-y)
$\eqalign{
& \left\{ \matrix{
{x^2} + xy + {y^2} = 19{\left( {x - y} \right)^2} \leftrightarrow {\left( {x - y} \right)^2} + 3xy = 19{\left( {x - y} \right)^2} \leftrightarrow 18{\left( {x - y} \right)^2} - 3xy = 0\;\;(1) l \cr
{x^2} - xy + {y^2} = 7\left( {x - y} \right) \leftrightarrow {\left( {x - y} \right)^2} + xy = 7\left( {x - y} \right) \leftrightarrow xy = {\left( {x - y} \right)^2} - 7\left( {x - y} \right)\;\;(2) \cr} \right. \cr
& thay\;(2)\;vao\;(1) \cr
& \to 15{\left( {x - y} \right)^2} + 21\left( {x - y} \right) = 0 \cr
& \leftrightarrow \left[ \matrix{
x - y = 0 \to xy = 0 \cr
15\left( {x - y} \right) + 21 = 0 \to xy = ... \cr} \right. \cr
& \leftrightarrow .... \cr
& \cr} $$