T
trantien.hocmai
$$I=\int_1^e \dfrac{2x^2+x(1+2\ln x)+\ln ^2x}{(x^2+x\ln x)^2}dx=\int_1^e \dfrac{x^2+x+(x+\ln x)^2}{x^2(x+\ln x)^2}dx \\
=\int_1^e \dfrac{x^2+x}{x^2(x+\ln x)^2}dx+\int_1^e \dfrac{dx}{x^2}=I_1+I_2 \\
I_1=\int_1^e \dfrac{x^2+x}{x^2(x+\ln x)^2}dx=\int_1^e \dfrac{1+\dfrac{1}{x}}{(x+\ln x)^2}dx \\$$
$\text{đặt }u=x+\ln x \rightarrow du=(1+\dfrac{1}{x})dx \\
\text{đổi cận }x=1 \rightarrow u=1, x=e \rightarrow u=1+e \\$
$$\rightarrow I_1=\int_1^{1+e} \dfrac{du}{u^2}=-\dfrac{1}{u}|_1^{1+e}= \\$$
$$I_2=\int_1^e \dfrac{dx}{x^2}=-\dfrac{1}{x}|_1^e= \\$$
$$I=\int_0^{\dfrac{\pi}{2}} \dfrac{x^2+\sin ^2x-\sin x}{x+\cos x}dx=\int_0^{\dfrac{\pi}{2}} \dfrac{x^2-\cos ^2x+\sin ^2x+\cos ^2x-\sin x}{x+\cos x}dx \\ =\int_0^{\dfrac{\pi}{2}} \dfrac{(x-\cos x)(x+\cos x)}{x+\cos x}dx+\int_0^{\dfrac{\pi}{2}} \dfrac{1-\sin x}{x+\cos x}dx=I_1+I_2 \\
I_1=\int_0^{\dfrac{\pi}{2}} \dfrac{(x-\cos x)(x+\cos x)}{x+\cos x}dx=\int_0^{\dfrac{\pi}{2}} (x-\cos x)=(\dfrac{1}{2}x^2-\sin x)|_0^{\dfrac{\pi}{2}} \\$$
$$I_2=\int_0^{\dfrac{\pi}{2}} \dfrac{1-\sin x}{x+\cos x}dx=\int_0^{\dfrac{\pi}{2}} \dfrac{d(x+\cos x)}{x+\cos x}=\ln|x+\cos x||_0^{\dfrac{\pi}{2}} \\$$
$$$$
=\int_1^e \dfrac{x^2+x}{x^2(x+\ln x)^2}dx+\int_1^e \dfrac{dx}{x^2}=I_1+I_2 \\
I_1=\int_1^e \dfrac{x^2+x}{x^2(x+\ln x)^2}dx=\int_1^e \dfrac{1+\dfrac{1}{x}}{(x+\ln x)^2}dx \\$$
$\text{đặt }u=x+\ln x \rightarrow du=(1+\dfrac{1}{x})dx \\
\text{đổi cận }x=1 \rightarrow u=1, x=e \rightarrow u=1+e \\$
$$\rightarrow I_1=\int_1^{1+e} \dfrac{du}{u^2}=-\dfrac{1}{u}|_1^{1+e}= \\$$
$$I_2=\int_1^e \dfrac{dx}{x^2}=-\dfrac{1}{x}|_1^e= \\$$
$$I=\int_0^{\dfrac{\pi}{2}} \dfrac{x^2+\sin ^2x-\sin x}{x+\cos x}dx=\int_0^{\dfrac{\pi}{2}} \dfrac{x^2-\cos ^2x+\sin ^2x+\cos ^2x-\sin x}{x+\cos x}dx \\ =\int_0^{\dfrac{\pi}{2}} \dfrac{(x-\cos x)(x+\cos x)}{x+\cos x}dx+\int_0^{\dfrac{\pi}{2}} \dfrac{1-\sin x}{x+\cos x}dx=I_1+I_2 \\
I_1=\int_0^{\dfrac{\pi}{2}} \dfrac{(x-\cos x)(x+\cos x)}{x+\cos x}dx=\int_0^{\dfrac{\pi}{2}} (x-\cos x)=(\dfrac{1}{2}x^2-\sin x)|_0^{\dfrac{\pi}{2}} \\$$
$$I_2=\int_0^{\dfrac{\pi}{2}} \dfrac{1-\sin x}{x+\cos x}dx=\int_0^{\dfrac{\pi}{2}} \dfrac{d(x+\cos x)}{x+\cos x}=\ln|x+\cos x||_0^{\dfrac{\pi}{2}} \\$$
$$$$
Last edited by a moderator: