Giải Hệ Phương Trình Sau :
[tex]\left\{ \begin{array}{l} x^3-2x+y+4=(x^2+x)\sqrt[3]{x(y+1)^2} \\ x^2+x-2 = \sqrt{x-y } \end{array} \right.[/tex]
Giải cụ thể nhé mọi người !
\[\begin{array}{l}
\left\{ \begin{array}{l}
{x^3} - 2x + y + 4 = \left( {{x^2} + x} \right)\sqrt[3]{{x{{\left( {y + 1} \right)}^2}}}\left( 1 \right)\\
{x^2} + x - 2 = \sqrt {x - y} \left( 2 \right)
\end{array} \right.\\
DK\left\{ \begin{array}{l}
x - y \ge 0\\
{x^2} + x - 2 \ge 0
\end{array} \right. \leftrightarrow \left\{ \begin{array}{l}
y \le x\\
\left[ \begin{array}{l}
x \ge 1\\
x \le - 2
\end{array} \right.
\end{array} \right.\\
\left( 2 \right) \leftrightarrow {x^4} + {x^2} + 4 - 2{x^3} + 4{x^2} - 4x = x - y\\
\leftrightarrow y = - {x^4} + 2{x^3} - 5{x^2} + 5x - 4\\
\left( 1 \right) \leftrightarrow - {x^4} + 3{x^3} - 5{x^2} + 3x = \left( {{x^2} + x} \right)\sqrt[3]{{x{{\left( { - {x^4} + 2{x^3} - 5{x^2} + 5x - 3} \right)}^2}}}\\
\leftrightarrow \left( {{x^2} + x} \right)\left( { - {x^2} - 2x - 3} \right) = \left( {{x^2} + x} \right)\sqrt[3]{{x{{\left( { - {x^4} + 2{x^3} - 5{x^2} + 5x - 3} \right)}^2}}}\\
\leftrightarrow \left( { - {x^2} - 2x - 3} \right) = \sqrt[3]{{x{{\left( { - {x^4} + 2{x^3} - 5{x^2} + 5x - 3} \right)}^2}}}\left( {do\,DK} \right)\\
\end{array}\]