V
viethoang1999
72) Cho $a;b;c>0$ thỏa $a+b+c=3$. Cmr: $\sum \sqrt{1+a^2+2bc}\le 6$
73) Cho $a;b;c\ge 0$ thỏa $a+b+c=3$.Cmr: $\sum \sqrt{a}\ge \sum ab$
74) Cho $a;b;c>0$ thỏa: $ab^2+bc^2+ca^2=3$. Cmr: $\sum \sqrt[3]{a+7}\le 2\sum a^4$
75) Cho $x;y;z>0$ thỏa: $\sum \dfrac{1}{1+x}\ge 2$.
Tìm Max $B=xyz$
Tổng quát: Cho $a_1;a_2;...;a_n>0$ thỏa: $\dfrac{1}{1+a_1}+\dfrac{1}{1+a_2}+...+\dfrac{1}{1+a_n}\ge n-1$.
Tìm Max $A=a_1.a_2...a_n$
76) Tìm Max $A=\dfrac{x^4+x+1+32\sqrt[4]{x^3-4x^2+7x-12}}{x^4+x^2+16x-11}$
77) Cho $a;b;c>0$ thỏa $a^2+b^2+c^2=1$. Cmr: $\sum \dfrac{a^2}{1+b-a}\ge 1$
78) Cho $x;y;z>0$ thỏa $xy^2z^2+x^2z+y=3z^2$. Tìm Max $Q=\dfrac{z^4}{1+z^4(x^4+y^4)}$
79) Cho $a;b;c>0$. Cmr: $\sum \dfrac{bc}{a^2+2bc}\le 1$
80) Cho $a;b;c;d>0$. Cmr: $\sum \dfrac{a^3}{a^2+b^2}\ge \dfrac{a+b+c+d}{2}$
73) Cho $a;b;c\ge 0$ thỏa $a+b+c=3$.Cmr: $\sum \sqrt{a}\ge \sum ab$
74) Cho $a;b;c>0$ thỏa: $ab^2+bc^2+ca^2=3$. Cmr: $\sum \sqrt[3]{a+7}\le 2\sum a^4$
75) Cho $x;y;z>0$ thỏa: $\sum \dfrac{1}{1+x}\ge 2$.
Tìm Max $B=xyz$
Tổng quát: Cho $a_1;a_2;...;a_n>0$ thỏa: $\dfrac{1}{1+a_1}+\dfrac{1}{1+a_2}+...+\dfrac{1}{1+a_n}\ge n-1$.
Tìm Max $A=a_1.a_2...a_n$
76) Tìm Max $A=\dfrac{x^4+x+1+32\sqrt[4]{x^3-4x^2+7x-12}}{x^4+x^2+16x-11}$
77) Cho $a;b;c>0$ thỏa $a^2+b^2+c^2=1$. Cmr: $\sum \dfrac{a^2}{1+b-a}\ge 1$
78) Cho $x;y;z>0$ thỏa $xy^2z^2+x^2z+y=3z^2$. Tìm Max $Q=\dfrac{z^4}{1+z^4(x^4+y^4)}$
79) Cho $a;b;c>0$. Cmr: $\sum \dfrac{bc}{a^2+2bc}\le 1$
80) Cho $a;b;c;d>0$. Cmr: $\sum \dfrac{a^3}{a^2+b^2}\ge \dfrac{a+b+c+d}{2}$
Last edited by a moderator: