H
hangthuthu
Câu 1 (T3):
Sđđ máy phát: ${E_0} = N\omega {\phi _0}$ mà $\omega = 2\pi f = 2\pi np$
\Rightarrow $E \sim p$ \Rightarrow $U \sim p$ và ${Z_L} \sim p;\,\,\,{Z_C} \sim 1/p$
* p1=2: cộng hưởng ${Z_{{L_1}}} = \,{Z_{{C_1}}} = R$
${I_1} = I = \frac{{{U_1}}}{{\sqrt {{R^2} + {{\left( {{Z_{L1}} - {Z_{C1}}} \right)}^2}} }} = \frac{{{U_1}}}{R}$
*p2 = 4 = 2p1:${U_2} = 2{U_1};\,{Z_{L2}} = 2{Z_{L1}} = 2R;\,{Z_{C2}} = {Z_{C1}}/2 = R/2$
${I_2} = \frac{{2{U_1}}}{{\sqrt {{R^2} + {{\left( {2R - R/2} \right)}^2}} }} = \frac{{4{U_1}}}{{\sqrt {13} R}} = \frac{4}{{\sqrt {13} }}I$
Sđđ máy phát: ${E_0} = N\omega {\phi _0}$ mà $\omega = 2\pi f = 2\pi np$
\Rightarrow $E \sim p$ \Rightarrow $U \sim p$ và ${Z_L} \sim p;\,\,\,{Z_C} \sim 1/p$
* p1=2: cộng hưởng ${Z_{{L_1}}} = \,{Z_{{C_1}}} = R$
${I_1} = I = \frac{{{U_1}}}{{\sqrt {{R^2} + {{\left( {{Z_{L1}} - {Z_{C1}}} \right)}^2}} }} = \frac{{{U_1}}}{R}$
*p2 = 4 = 2p1:${U_2} = 2{U_1};\,{Z_{L2}} = 2{Z_{L1}} = 2R;\,{Z_{C2}} = {Z_{C1}}/2 = R/2$
${I_2} = \frac{{2{U_1}}}{{\sqrt {{R^2} + {{\left( {2R - R/2} \right)}^2}} }} = \frac{{4{U_1}}}{{\sqrt {13} R}} = \frac{4}{{\sqrt {13} }}I$
Last edited by a moderator: