V
vipboycodon
Theo bất đẳng thức cauchy - schwarz ta có :
$\dfrac{1^2}{a^2+b^2+c^2}+\dfrac{2^2}{2(ab+bc+ac)} \ge \dfrac{(1+2)^2}{a^2+b^2+c^2+2(ab+bc+ac)} = \dfrac{9}{(a+b+c)^2}$
Cái kia là do :
$ab+bc+ac \le 3 $
=> $\dfrac{1}{ab+bc+ac} \ge \dfrac{1}{3}$
<=> $\dfrac{2007}{ab+bc+ac} \ge \dfrac{2007}{3} = 669$
$\dfrac{1^2}{a^2+b^2+c^2}+\dfrac{2^2}{2(ab+bc+ac)} \ge \dfrac{(1+2)^2}{a^2+b^2+c^2+2(ab+bc+ac)} = \dfrac{9}{(a+b+c)^2}$
Cái kia là do :
$ab+bc+ac \le 3 $
=> $\dfrac{1}{ab+bc+ac} \ge \dfrac{1}{3}$
<=> $\dfrac{2007}{ab+bc+ac} \ge \dfrac{2007}{3} = 669$