Chỗ này bác dùng Schwarz ra nhanh hơn đấy :v\[P=\sum \frac{1}{a^{3}(b+c)}=\sum \frac{\frac{1}{a^{2}}}{b+c} \\Dat (\frac{1}{a};\frac{1}{b};\frac{1}{c})\rightarrow (x;y;z)\Rightarrow xyz=1 \\P=\frac{x^{2}}{y+z}+\frac{y^{2}}{z+x}+\frac{z^{2}}{x+y} \\Cosi:\frac{x^{2}}{y+z}+\frac{y+z}{4}\geq x\Rightarrow \frac{x^{2}}{y+z}\geq x-\frac{y+z}{4} \\\Rightarrow P\geq x+y+z-\frac{2(x+y+z)}{4}=\frac{x+y+z}{2}\geq \frac{3\sqrt[3]{xyz}}{2}=\frac{3}{2}\]
Dấu '=' xảy ra khi $x=y=z=1$ $\Rightarrow a=b=c=1$
[tex]P=\sum \frac{(\frac{1}{a^2})^2}{ab+ac} \geq \frac{(ab+bc+ac)^2}{2(ab+bc+ac)} =\frac{ab+bc+ac}{2} \geq \frac{3\sqrt[3]{ab.bc.ac}}{2}=\frac{3}{2}[/tex]