Kết quả tìm kiếm

  1. c3lttrong.0a1.nhphat

    Toán 10 Toán hình GTNN khó

    38. S=\sqrt{p(p-a)(p-b)(p-c)} \leq \dfrac{(a+b+c)^2}{12\sqrt3} (1) Áp dụng định lý cosin tử=\dfrac{a^2+b^2+c^2}{2}\geq \dfrac{(a+b+c)^2}{6} (2) Từ (1) và (2) suy ra Q \leq 2\sqrt3
  2. c3lttrong.0a1.nhphat

    Toán 11 Trong một lô hàng có 3 sản phẩm loại 1

    n(\Omega)=C^6_{12}=924 Gọi A là biến cố Vì 2 phần không phân thứ tự nên có 2 th n(A)=C^2_3C^2_4C^2_5+C^2_3C^3_4C^1_5=240 vậy P(A)=\dfrac{n(A)}{n(\Omega)}=\dfrac{20}{77}
  3. c3lttrong.0a1.nhphat

    Toán 11 Bài ôn 15 ph ạ

    n(\Omega)=C^5_{21}=20349 a) Gọi A là biến cố ..... TH1 lấy 4 bi vàng C^4_7C^1_{14} TH2 lấy 5 bi vàng C^5_7 Vậy P(A)=1-\dfrac{C^4_7C^1_{14}+C^5_7}{20349}=\dfrac{2834}{2907} b) Gọi B là biến cố .... TH1 lấy đúng 1 màu C^5_8+C^5_7+C^5_6 TH2 lấy 2 màu C^5_{15}+C^5_{13}+C^5_{14} Vậy...
  4. c3lttrong.0a1.nhphat

    Toán 10 Cho tứ giác ABCD có hai đường chéo cắt nhau tại O.

    À mk ghi thiếu để mình sửa lại
  5. c3lttrong.0a1.nhphat

    11

    11
  6. c3lttrong.0a1.nhphat

    Toán 9 Tính chất 2 tiếp tuyến cắt nhau

    a) \left.\begin{matrix} OA\perp IA\\\\ IK\perp IA \end{matrix}\right\}\Rightarrow IK // OA b) Ta có IK//OA \Rightarrow \widehat{AOI}=\widehat{OIK} mà \widehat{AOI} = \widehat{BOI} (tính chất 2 tiếp tuyến cắt nhau) nên \widehat{KOI}=\widehat{OIK}\Rightarrow \Delta IOK cân
  7. c3lttrong.0a1.nhphat

    Toán 10 Cho tứ giác ABCD có hai đường chéo cắt nhau tại O.

    Ta có \overrightarrow{OC}=- 3\overrightarrow{OA}; \overrightarrow{OD}= -2\overrightarrow{OA} Vì \overrightarrow{OM}; \overrightarrow{ON} cùng phương nên tồn tại k sao cho \overrightarrow{ON}=k \overrightarrow{OM} =\dfrac{k}{2}( \overrightarrow{OA}+ \overrightarrow{OB}) (1) Đặt...
  8. c3lttrong.0a1.nhphat

    Toán 9 Cho tam giác ABC có AB = 5cm, AC= 6cm

    aaaaa Trên BC lấy điểm D sao cho BD=AB=5cm .Tam giác ABD cân tại B nên \widehat{ADC}= \widehat{BAC}=90^o+\dfrac{ \widehat{B}}{2} Ta có \Delta DCA \sim \Delta ACB (g.g) \Rightarrow \dfrac{CA}{CB}=\dfrac{DC}{AC} \Rightarrow AC^2=DC.CB=DC.(DC+5) =36 \Rightarrow DC=4 \Rightarrow CB=5+4=9 (cm)
  9. c3lttrong.0a1.nhphat

    Toán 8 Tìm giá trị lớn nhất

    P=\dfrac{4a}{2a}+\dfrac{3(b+c)}{2a}+\dfrac{3b}{3b}+\dfrac{8(2a+3c)}{2a+3c}+\dfrac{12(b-c)}{2a+3c}-11=(4a+3b+3c)(\dfrac{1}{2a}+\dfrac{1}{3b}+\dfrac{4}{2a+3c})-11 \geq (4a+3b+3c).\dfrac{(1+2+2)^2}{2a+3b+2a+3c}-11=16-11=5 Dấu bằng xảy ra khi a=\dfrac{3}{2}b=\dfrac{3}{2}c
  10. c3lttrong.0a1.nhphat

    Toán 12 chứng minh tứ giác lồi cso đỉnh nắm trong n điểm

    Trước tiên , ta xét 5 điểm bất kì, không có 3 điểm nào thẳng hàng. Ta vạch một bao lồi. Nếu bao lồi này có hơn 3 điểm thì hiển nhiên có ít nhất 1 tứ giác lồi. Nếu chỉ gồm 3 điểm, chẳng hạn A,B,C thì 2 điểm D,E phải nằm trong tam giác ABC. Khi đó , có hai đỉnh của tam giác ABC nằm cùng phía đối...
  11. c3lttrong.0a1.nhphat

    :))) dạ chào huynh đài, tại hạ thân phận thấp kém xin phép làm quen ạ.

    :))) dạ chào huynh đài, tại hạ thân phận thấp kém xin phép làm quen ạ.
  12. c3lttrong.0a1.nhphat

    Toán 10 Véctơ

    Lời giải đây bạn nhé!! |\overrightarrow{AB}-\overrightarrow{AC}|=|\overrightarrow{AB}+\overrightarrow{CA}|=|\overrightarrow{CB}|=CB=a
  13. c3lttrong.0a1.nhphat

    Toán 10 Véctơ

    cạnh nào bằng a với ABC là tam giác gì bạn ?
  14. c3lttrong.0a1.nhphat

    Toán 9 PT vô tỉ

    2) Điều kiện: x>0;y\geq3 pt đầu \Leftrightarrow \dfrac{y-3}{\sqrt{x+y}-\sqrt{x+3}}=\dfrac{y-3}{x} \Leftrightarrow \left[\begin{array}{l} y=3\\\sqrt{x+y}-\sqrt{x+3}=x\end{array}\right. xét y=3 (vô nghiệm) Xét y >3 \begin{cases} \sqrt{x+y}-\sqrt{x-3}=x\\\sqrt{x+y}+\sqrt{x}=x+3 \end{cases} trừ 2 pt...
  15. c3lttrong.0a1.nhphat

    Toán 9 PT vô tỉ

    1) Điều kiện x \geq \dfrac{1}{2}. Đặt a=\sqrt{x+3} >0;b=\sqrt{2x-1} \geq 0 pt tương đương ab+2x^2=x(a+2b) \leftrightarrow (ab-ax)+(2x^2-2bx)=0\Leftrightarrow (b-x)(a-2x)=0 Tới đây bạn tự giải tiếp nhé
  16. c3lttrong.0a1.nhphat

    Toán 10 Vectơ

    23) F_{hl}=\sqrt{MA^2+MB^2}=500 (N) 24) Gọi F_4 là vector tổng hợp lực của F_1 và F_2 Khi đó \begin{cases} \overrightarrow{F_3}=-\overrightarrow{F_4}\\\\F_3=\sqrt{MA^2+MB^2+2MA.MB \cos 60^o} =100(N)\end{cases} 25)...
  17. c3lttrong.0a1.nhphat

    Toán 10 Chứng minh

    16. \overrightarrow{AA^{'}}=\overrightarrow{AG}+\overrightarrow{GG^{'}}+\overrightarrow{G^{'}A^{'}} \overrightarrow{BB^{'}}=\overrightarrow{BG}+\overrightarrow{GG^{'}}+\overrightarrow{G^{'}B^{'}} \overrightarrow{CC^{'}}=\overrightarrow{CG}+\overrightarrow{GG^{'}}+\overrightarrow{G^{'}C^{'}} Vì...
  18. c3lttrong.0a1.nhphat

    Toán 10 Lưới ô vuông - Tổ hợp

    nãy mình chụp thiếu xin lỗi bạn
  19. c3lttrong.0a1.nhphat

    Toán 10 Lưới ô vuông - Tổ hợp

    Lời giải đây bạn nhé
  20. c3lttrong.0a1.nhphat

    Toán 9 Đồ thị hàm số bậc nhất

    do là a_1a_3=-1 nha bạn
Top Bottom