3. Tìm Min
c, C = (x+1)(x+2)(x+3)(x+4)
C=(x+1)(x+4).(x+2)(x+3)
C=(x^2+5x+4)(x^2+5x+6)
Đặt x^2+5x+4=a
=> C = a(a+2)=a^2+2a=(a+1)^2-1\geq-1
=> C_{min}=-1 <=> a=-1<=>x^2+5x+4=-1=>x=\frac{-5-\sqrt{5}}{2} hoặc x=\frac{-5+\sqrt{5}}{2}
1. Tìm Min
a, A = (x+2)^2+3\geq 3
=> A_{min}=3 <=> x=-2
b, B =...