[TEX]\blue 7/I= \lim_{x\to0} \ \frac{1+xsinx-cos2x}{sin^2x} \\ I=\lim_{x\to 0} \ (\frac{1-cos2x}{sin^2x}+\frac{xsinx}{sin^2x}) \\ \Leftrightarrow I=\lim_{x\to 0} \ (\frac{2sin^2x}{sin^2x}+\frac{xsinx}{sin^2x}) \\ \Leftrightarrow I=\lim_{x\to 0} \ (2+\frac{x}{sinx}) \\ \Leftrightarrow I=3 \\ \ \\ \ \\ \ \\ \ \\ 8/ P=\lim_{x\to0} \ \frac{1-cos^3x}{xsin2x} \\ P=\lim_{x\to 0} \ \frac{(1-cosx)(sin^2x+cos^2x+sinxcosx)}{2xsinxcosx} \\ \Leftrightarrow P=\lim_{x\to 0} \ [\frac{2sin^2{\frac x 2}(1+sinxcosx)}{2\frac {x^2}{4}sinxcosx}.\frac x4] \\ \Leftrightarrow P=\lim_{x\to 0} [\frac{sin^2{\frac x 2}}{\frac {x^2}{4}}.\frac {x}{sinx}.\frac{1+sinxcosx}{4cosx}] \\ \Leftrightarrow P= \frac 14 \\ \ \\ \ \\ \ \\ \ \\9/Q= \lim_{x\to0} \ \frac{1-cosxcos2x}{x^2} \\ Q= \lim_{x\to0} \ \frac{1-cosx(cos^2x-sin^2x)}{x^2} \\ \Leftrightarrow Q= \lim_{x\to0} \ [\frac{1-cos^3x}{x^2}+\frac{cosxsin^2x}{x^2}]\\ \Leftrightarrow Q= \lim_{x\to0} \ [\frac{(1-cosx)(1+sinxcosx)}{x^2}+cosx\frac{sin^2x}{x^2}]\\ \Leftrightarrow Q= \lim_{x\to0} \ [2\frac{sin^2{\frac{x}{2}}}{\frac{x^2}{4}} \ . \ \frac{1+sinxcosx}{4} +cosx\frac{sin^2x}{x^2}] \\ \Leftrightarrow Q=\frac 32[/tex]
Cơm !