Bài 1:
$P=\sum \dfrac{x}{\sqrt{1+x^2}}
\\=\sum \dfrac{x}{\sqrt{xy+yz+zx+x^2}}
\\=\sum \dfrac{x}{\sqrt{(x+y)(x+z)}}
\\=\sum \dfrac{\sqrt{x}.\sqrt{x}}{\sqrt{(x+y)(x+z)}}
\\\leq \sum \dfrac{1}{2}(\dfrac{x}{x+y}+\dfrac{x}{x+z})
\\=\dfrac{3}{2}$
Dấu '='
x=y=z=...
Bài 2:
$\sum \dfrac{1}{x^2+2y^2+3}
\\= \sum \dfrac{1}{(x^2+y^2)+(y^2+1)+2}
\\\leq \sum \dfrac{1}{2xy+2y+2}
\\=\sum \dfrac{1}{2}.\dfrac{1}{xy+y+1}$
Đặt
x=a1,y=b1⇒z=ab
Thay vào ta sẽ có
∑xy+y+11=1 do đó
≤21(Q.E.D)