T
theempire
Rõ ràng là từ 2 điểm đó cho ra 2 tiếp tuyến khác nhau lận mà. Đâu phải chỉ có 1 đâu. Tui thật sự hổng hiểu ý của bạn là gì hết trơn đó 
và bài này chỉ có 2tt thôi à?ngucu said:lấy 1 vd cho bạn dễ hiểu
2)Tìm điểm M trên trục hoành sao cho từ đấy có thể kẻ được 3 tiếp tuyến đến đồ thị hàm số [tex]y=x^3-3x+2[/tex]
hừ các bạn có chiụ đọc bài tui post đâutheempire said:Theo tui thui nha (chưa chứng minh cũng hổng bít đúng hay sai nữa cho nên đừng có phê bình gì hết về chuyện này nghen) là số nghiệm của PT f'(x)=0 là số tiếp tuyến tối đa có được. Tui nghĩ vậy bởi vì qua nhiều BT thì KQ vậy đó. Mấy bạn xem thử coi vụ này có đúng hông
kém lắm, đó là qui tắc dùng đạo hàm tìm giới hạn9999999tears said:Hic, lopitan là cái j vậy? mình học lớp 12 sao ko bit?
vd như bài này này, đồ bã đậungucu said:levis said:bạn theempire cũng đang học pần này à?
tớ có cái bài này kq =1 nếu tính thông thường, còn dùng lopitan thì =15/83 mới chết chứ
[tex] \lim_{x->0}{\frac{98}{83}(\frac{1-cos3xcos5xcos7x}{sin^27x})}[/tex] #-o
[tex]\lim_{x->0}{\frac{98}{83}(\frac{1-cos3xcos5xcos7x}{sin^27x})}[/tex]
[tex] g(x)' = -3sin3xcos5xcos7x -5cos3xsin5xcos7x - 7cos3xcos5xsin7x[/tex]
[tex] h(x)'=\frac{sin^27x}{7x}.7x[/tex]
[tex] \lim_{x->0}{\frac{sin^27x}{7x}} =1[/tex]
nên pt trở thành
[tex] f(x) =\frac{-3sin3xcos5xcos7x -5cos3xsin5xcos7x - 7cos3xcos5xsin7x}{7x}[/tex]
lại chia ngược lên tính lim từng cái nhỏ
[tex]\lim_{x->0}\frac{sin3x}{3x}=1[/tex]
[tex]\lim_{x->0}\frac{sin5x}{5x}=1[/tex]
[tex]\lim_{x->0}\frac{sin7x}{7x}=1[/tex]
vậy [tex]\lim_{x->0}\frac{-3-5-7}{3/7.5/7}[/tex] =??? ơ lạ thía nhỉ
vd như bài này này, đồ bã đậu