[Toán 12] Một cách biến đổi tích phân

N

ngomaithuy93

[TẶNG BẠN] TRỌN BỘ Bí kíp học tốt 08 môn
Chắc suất Đại học top - Giữ chỗ ngay!!

ĐĂNG BÀI NGAY để cùng trao đổi với các thành viên siêu nhiệt tình & dễ thương trên diễn đàn.

Xin được chia sẻ với các bạn một cách biến đổi đặc biệt tích phân [TEX]\int_a^bf(x)dx[/TEX]: Đặt t=a+b-x
VD1:[TEX] I=\int_{-1}^1ln(\frac{1-2x}{1+2x})dx[/TEX]
Đặt t=-x \Rightarrow dt=-dx
[TEX]I=\int_{-1}^1ln(\frac{1+2t}{1-2t})dt=-\int_{-1}^1ln(\frac{1-2t}{1+2t})dt=-I[/TEX]
\Rightarrow I=0
VD2: [TEX]I=\int_0^{\frac{\pi}{2}}\frac{\sqrt{sinx}dx}{\sqrt{sinx}+\sqrt{cosx}}[/TEX]
Đặt [TEX]t=\frac{\pi}{2}-x \Rightarrow dt=-dx[/TEX]
[TEX] I=-\int_{\frac{\pi}{2}}^0\frac{\sqrt{sin(\frac{\pi}{2}-t)}dt}{\sqrt{sin(\frac{\pi}{2}-t)}+\sqrt{cos(\frac{\pi}{2}-t)}}[/TEX]
[TEX]=\int_0^{\frac{\pi}{2}}\frac{\sqrt{cost}.dt}{\sqrt{sint}+\sqrt{cost}}[/TEX]

[TEX]=\int_0^{\frac{\pi}{2}}\frac{\sqrt{cosx}.dx}{\sqrt{sinx}+\sqrt{cosx}}=J[/TEX]
[TEX] I+J=\int_0^{\frac{\pi}{2}}dx=x|_0^{\frac{\pi}{2}}=\frac{\pi}{2} \Rightarrow I=J=\frac{\pi}{4}[/TEX]
(Nguồn: BK magazine)
 
N

ngomaithuy93

Một số BT tự luyện

[TEX]1. I=\int_0^{\frac{\pi}{4}}ln(1+tanx)dx[/TEX]
[TEX] 2. I=\int_0^{\frac{\pi}{2}}\frac{sin^3xdx}{sin^3x+cos^3x}[/TEX]
[TEX] 3. I=\int_0^{\frac{\pi}{2}}\frac{cosxdx}{(cosx+sinx)^3}[/TEX]
[TEX] 4. I=\int_{-1}^1\frac{|x|dx}{1+2009^x}[/TEX]
[TEX] 5. I=\int_{-1}^1ln(\sqrt{x^2+1}-x)dx[/TEX]
... :)
 
V

vivietnam

[TEX] 2. I=\int_0^{\frac{\pi}{2}}\frac{sin^3xdx}{sin^3x+cos^3x}[/TEX]
[TEX] 3. I=\int_0^{\frac{\pi}{2}}\frac{cosxdx}{(cosx+sinx)^3}[/TEX]

thôi làm tạm 2 câu mở màn
2, đặt [TEX]x=\frac{\pi}{2}-t \Rightarrow dx=-dt[/TEX]
\Rightarrow[TEX]I=\int_0^{\frac{\pi}{2}}\frac{cos^3tdt}{sin^3t+cos^3t}=\int_0^{\frac{\pi}{2}}\frac{cos^3xdx}{sin^3x+cos^3x}[/TEX]
\Rightarrow[TEX]2.I=\int_0^{\frac{\pi}{2}}dx=\frac{\pi}{2}[/TEX]
\Rightarrow[TEX]I=\frac{\pi}{4}[/TEX]
3,đặt như trên
\Rightarrow[TEX]2I=\int_0^{\frac{\pi}{2}}\frac{dx}{(sinx+cosx)^2}[/TEX]=[TEX]\int_0^{\frac{\pi}{2}} \frac{dx}{2.sin^2(x+\frac{\pi}{4})}[/TEX]=[TEX] -\frac{cot(x+\frac{\pi}{4})}{2}|_0^{\frac{\pi}{2}}=................[/TEX]
 
Last edited by a moderator:
V

vivietnam

thêm mấy câu dạng này nữa

[TEX]I=\int_{0}^{\frac{\pi}{2}} ln(\frac{1+sinx}{1+cosx})dx[/TEX]

[TEX]J=\int_{0}^{\frac{\pi}{2}} ln(\frac{1+sin^3x}{1+cos^3x})dx[/TEX]

[TEX]K=\int_{\frac{-\pi}{2}}^{\frac{\pi}{2}} \frac{sinx.(sinx+cosx)}{1+|sin2x|}dx[/TEX]

[TEX]M=\int_{-1}^{1} |x|.(1+arctanx)^3dx[/TEX]
 
Last edited by a moderator:
V

vivietnam

[TEX]1. I=\int_0^{\frac{\pi}{4}}ln(1+tanx)dx[/TEX]
[TEX] 4. I=\int_{-1}^1\frac{|x|dx}{1+2009^x}[/TEX]
[TEX] 5. I=\int_{-1}^1ln(\sqrt{x^2+1}-x)dx[/TEX]
1, đặt [TEX]x=\frac{\pi}{4}-t \Rightarrow dx=-dt[/TEX]

\Rightarrow [TEX]I=\int_{0}^{\frac{\pi}{4}} ln(1+tan(\frac{\pi}{4}-t)dt=\int_0^{\frac{\pi}{4}} ln (\frac{2.cost}{sint+cost})dt=\int_0^{\frac{\pi}{4}}ln2dt-\int_0^{\frac{\pi}{4}} ln(1+tant)dt[/TEX]
\Rightarrow[TEX]I=\frac{\pi.ln2}{4}[/TEX]

4,đặt x=-t \Rightarrowdx=-dt
\Rightarrow[TEX]I=\int_{-1}^1 \frac{|t|.2009^tdt}{1+2009^t}[/TEX]
\Rightarrow[TEX]2I=\int_{-1}^1 |t|dt=2.\int_0^1tdt=2[/TEX]
\RightarrowI=1
5,đặt x=-t \Rightarrowdx=-dt
\Rightarrow[TEX]I=\int_{-1}^1 ln(\sqrt{t^2+1}+t)dt[/TEX]
\Rightarrow[TEX]2I=\int_{-1}^1ln1dt=2.\int_0^1ln1=2.ln1=0[/TEX]
\RightarrowI=0

thế này hình như là độc tấu
 
Q

quyenuy0241

I=\int_{}^{}[TEX]\frac{1}{x^2+x+1}dx[/TEX]
L=\int_{}^{}[TEX]\frac{dx}{x(x^3+1)}[/TEX]

1.

[tex] \int_{}^{} \frac{1}{(x+\frac{1}{2})^2+\frac{3}{4}}= \frac{2arctan {\frac{2x+1}{\sqrt{3}}}}{\sqrt{3}}+C [/TEX]

2.
Đặt [TEX]u=x^3 \Rightarrow du=3x^2dx [/TEX]

[TEX]L=\frac{1}{3} \int_{}^{} (\frac{1}{u}-\frac{1}{u+1})du = \frac{1}{3}.(ln|x^3|- ln|x^3+1|)+C[/TEX]
 
V

vivietnam

[TEX]\int_{0}^{\frac{\pi}{2}}\frac{sin^{2004}x}{sin^{2004}x+cos^{2004}x}dx[/TEX]:)
đặt [TEX]x=\frac{\pi}{2}-t \Rightarrow dx=-dt[/TEX]
[TEX]I=\int_0^{\frac{\pi}{2}} \frac{cos^{2004}t}{sin^{2004}t+cos^{2004}t}dt=\int_0^{\frac{\pi}{2}} \frac{cos^{2004}x}{sin^{2004}x+cos^{2004}x}dx[/TEX]
\Rightarrow[TEX]2I=\int_0^{\frac{\pi}{2}} \frac{sin^{2004}x+cos{2004}x}{sin^{2004}x+cos^{2004}x}dx=\int_0^{\frac{\pi}{2}}dx=\frac{\pi}{2}[/TEX]
\Rightarrow[TEX]I=\frac{\pi}{4}[/TEX]
 
N

ngomaithuy93

Tính:
[TEX]I= \int_{2}^{\sqrt{3}} \sqrt{x^2-1}dx [/TEX] .
[TEX]x=\frac{1}{cost} (\frac{\pi}{6} \leq t \leq \frac{\pi}{3}) \Rightarrow dx=\frac{sint}{cos^2t}dt[/TEX]

[TEX]\Rightarrow I=\int_{\frac{\pi}{3}}^{\frac{\pi}{6}}\frac{sint}{cos^2t}\sqrt{\frac{1}{cos^2t}-1}dt=-\int_{\frac{\pi}{6}}^{\frac{\pi}{3}}\frac{sint.tant}{cos^2t}dt=-\int_{\frac{\pi}{6}}^{\frac{\pi}{3}}\frac{sin^2t}{cos^3t}dt[/TEX]
[TEX]= -\int_{\frac{\pi}{6}}^{\frac{\pi}{3}}\frac{sin^2td(sint)}{(1-sin^2t)^2}[/TEX]
[TEX] ... u=sin^2t...[/TEX] :)
 
Last edited by a moderator:
N

ngomaithuy93

I=\int_{}^{}[TEX]\frac{1}{x^2+x+1}dx[/TEX]
[TEX]I= \int \frac{dx}{(x+\frac{1}{2})^2+\frac{3}{4}}[/TEX]
[TEX]x+\frac{1}{2}=\frac{\sqrt{3}}{2}tant (\frac{- \pi}{2} \leq t \leq \frac{\pi}{2}) \Rightarrow dx=\frac{\sqrt{3}}{2cos^2t}dt[/TEX]
[TEX] I=\int \frac{2\sqrt{3}}{3}dt=\frac{2\sqrt{3}}{3}t+c=\frac{2\sqrt{3}}{3}(x+\frac{1}{2})+c[/TEX]
=========================================================
DẠNG: [TEX]\int \frac{dx}{x^2+k} (k>0)[/TEX] :
Đặt [TEX]x=\sqrt{k}tant (\frac{\pi}{2} < t < \frac{\pi}{2})[/TEX], áp dụng CTLG: [TEX]1+tan^2a=\frac{1}{cos^2a}[/TEX] hoặc [TEX]1+cot^2a=\frac{1}{sin^2a}[/TEX] :)

-------------------------------------------------------------------------------------------------------
AD:
[TEX]1. \int_0^{\frac{\pi}{2}}\frac{sinxdx}{cos^2x+3}[/TEX]
[TEX]2. \int_0^{\frac{\pi}{2}}\frac{sin^3xdx}{1+cos^2x}[/TEX]
[TEX]3. \int_0^1\frac{xdx}{x^4+x^2+1}[/TEX]
[TEX]4.<DHNT-A> \int_{-1}^1\frac{dx}{(1+x^2)^2}[/TEX]
[TEX]5.<DHYHN> \int_0^1\frac{dx}{x^4+4x^2+3}[/TEX]
 
Last edited by a moderator:
Q

quyenuy0241



MSP110819de658ecgac9fba000059a3gea56hf00ff6
 
Last edited by a moderator:
N

ngomaithuy93

[TEX]\int ln(\sqrt{x+1}+\sqrt{x-1})dx[/TEX]
[TEX]\left{{u=ln(\sqrt{x+1}+\sqrt{x-1})dx}\\{dv=dx} \Rightarrow \left{{du=\frac{dx}{\sqrt{x^2-1}}\\{v=x}[/TEX]
[TEX] \Rightarrow \int ln(\sqrt{x+1}+\sqrt{x-1})dx=xln(\sqrt{x+1}+\sqrt{x-1})dx-\int \frac{xdx}{\sqrt{x^2-1}}[/TEX]
Đúng rồi, t đạo hàm sai!
Sr, :)!
Translate into Vietnamese, please!
I don't understand! :)
 
V

vivietnam


[TEX]4.<DHNT-A> \int_{-1}^1\frac{dx}{(1+x^2)^2}[/TEX]
[TEX]5.<DHYHN> \int_0^1\frac{dx}{x^4+4x^2+3}[/TEX]
làm mấy câu này

[TEX]5,=\int_0^1 \frac{dx}{(x^2+1).(x^2+3)}[/TEX]
[TEX]=\frac{1}{2}\int_0^1(\frac{1}{x^2+1}-\frac{1}{x^2+3})dx=\frac{1}{2}.(arctanx-\frac{1}{\sqrt{3}}arctan(\frac{x}{\sqrt{3}}))|_0^1=.....[/TEX]

4,đặt x=tant \Rightarrow[TEX]dx=(tan^2t+1)dt[/TEX]

[TEX]I=\int_{-1}^1\frac{dt}{tan^2t+1}=\int_{-1}^1cos^2tdt=\int_{-1}^1\frac{1+cos2t}{2}dt=(\frac{x}{2}+\frac{sin2t}{4})|_{-1}^1=.............[/TEX]


[TEX]I=\int_{0}^{\frac{\pi}{2}} ln(\frac{1+sinx}{1+cosx})dx[/TEX]

[TEX]J=\int_{0}^{\frac{\pi}{2}} ln(\frac{1+sin^3x}{1+cos^3x})dx[/TEX]


anh đã sửa đề 2 câu này nhé
vầy cho đúng
chứ để như đề cũ thì rất phức tạp
cách giải kia ko đúng đâu
 
Last edited by a moderator:
Top Bottom