N
ngomaithuy93


Xin được chia sẻ với các bạn một cách biến đổi đặc biệt tích phân [TEX]\int_a^bf(x)dx[/TEX]: Đặt t=a+b-x
VD1:[TEX] I=\int_{-1}^1ln(\frac{1-2x}{1+2x})dx[/TEX]
Đặt t=-x \Rightarrow dt=-dx
[TEX]I=\int_{-1}^1ln(\frac{1+2t}{1-2t})dt=-\int_{-1}^1ln(\frac{1-2t}{1+2t})dt=-I[/TEX]
\Rightarrow I=0
VD2: [TEX]I=\int_0^{\frac{\pi}{2}}\frac{\sqrt{sinx}dx}{\sqrt{sinx}+\sqrt{cosx}}[/TEX]
Đặt [TEX]t=\frac{\pi}{2}-x \Rightarrow dt=-dx[/TEX]
[TEX] I=-\int_{\frac{\pi}{2}}^0\frac{\sqrt{sin(\frac{\pi}{2}-t)}dt}{\sqrt{sin(\frac{\pi}{2}-t)}+\sqrt{cos(\frac{\pi}{2}-t)}}[/TEX]
[TEX]=\int_0^{\frac{\pi}{2}}\frac{\sqrt{cost}.dt}{\sqrt{sint}+\sqrt{cost}}[/TEX]
[TEX]=\int_0^{\frac{\pi}{2}}\frac{\sqrt{cosx}.dx}{\sqrt{sinx}+\sqrt{cosx}}=J[/TEX]
[TEX] I+J=\int_0^{\frac{\pi}{2}}dx=x|_0^{\frac{\pi}{2}}=\frac{\pi}{2} \Rightarrow I=J=\frac{\pi}{4}[/TEX]
(Nguồn: BK magazine)
VD1:[TEX] I=\int_{-1}^1ln(\frac{1-2x}{1+2x})dx[/TEX]
Đặt t=-x \Rightarrow dt=-dx
[TEX]I=\int_{-1}^1ln(\frac{1+2t}{1-2t})dt=-\int_{-1}^1ln(\frac{1-2t}{1+2t})dt=-I[/TEX]
\Rightarrow I=0
VD2: [TEX]I=\int_0^{\frac{\pi}{2}}\frac{\sqrt{sinx}dx}{\sqrt{sinx}+\sqrt{cosx}}[/TEX]
Đặt [TEX]t=\frac{\pi}{2}-x \Rightarrow dt=-dx[/TEX]
[TEX] I=-\int_{\frac{\pi}{2}}^0\frac{\sqrt{sin(\frac{\pi}{2}-t)}dt}{\sqrt{sin(\frac{\pi}{2}-t)}+\sqrt{cos(\frac{\pi}{2}-t)}}[/TEX]
[TEX]=\int_0^{\frac{\pi}{2}}\frac{\sqrt{cost}.dt}{\sqrt{sint}+\sqrt{cost}}[/TEX]
[TEX]=\int_0^{\frac{\pi}{2}}\frac{\sqrt{cosx}.dx}{\sqrt{sinx}+\sqrt{cosx}}=J[/TEX]
[TEX] I+J=\int_0^{\frac{\pi}{2}}dx=x|_0^{\frac{\pi}{2}}=\frac{\pi}{2} \Rightarrow I=J=\frac{\pi}{4}[/TEX]
(Nguồn: BK magazine)