N
nhocngo976
Mời các chú xơi câu này cho nóng: Cho hàm số [TEX]y= x^4+ 4mx^3 + 3(m+1)x^2+1[/TEX]
Tìm m để hàm số có cực tiểu mà ko có cực đại,,,,,,,,,,,,,,,,,,,,,
[TEX]\color{blue} f'(x)= 4x^3+12mx^2 +6(m+1)x=2x(2x^2+6mx+3(m+1)) \\\\ f'(x)=0 \leftrightarrow \left[\begin{ x=0 \\ g(x)= 2x^2 +6mx+3(m+1)=0 \right. \\\\ *. \Delta '_g <0 \leftrightarrow m \in [\frac{1-\sqrt{7}}{3};\frac{1+\sqrt{7}}{3}] \ <---> g(x) \ge 0 \ voi \ moi \ x \\\\ ---> f'(x) \ triet \ tieu \; va \ doi \ dau \ tai \ x=0 , \ ma \ f''(0)=6(m+1) >0 \ voi \ moi \ m \in [\frac{1-\sqrt{7}}{3};\frac{1+\sqrt{7}}{3}] \\\\ --> f_{CT}=f(0)=1 , \ tuc \ hs \\ chi \ co\ CT \ k \ co \ CD \\\\\ * . neu \left{\begin{ \Delta ' _g >0 \\ g(0)=3(m+1)=0 \right. \leftrightarrow m=-1 \ thi \ f'(x)= 2x(2x^2 -6x)= 4x^2(x-3) \\\\ f'(x)=0 \leftrightarrow x=0 ( \ la \ nghiem \ kep ) ; x=3 \\\\ khi \ do \ qua \ x=0 \ y' \ k \ doi \ dau --> tai \ x=0 \ k \ co \ cuc \ tri \\\\ ve \ BBT --> x=3 \ la \ CT \\\\ *. neu \left{\begin{ \Delta '_g >0 \\ g(0) \ khac \ 0 \right. \leftrightarrow m=-1 ,---> f'(x) \ co \ 3 \ ngiem \ pb x_1;x2;x3 ( \ gia \ su x_1 <x_2<x_3) \\\\ \ ve \ BBT \ thay \ hs \ co \ CD ---> k \ tm \\\\ . \\\\ . VAY : \ m \in [\frac{1-\sqrt{7}}{3}; \frac{1+\sqrt{7}}{3}] \cup {\{-1}\}[/TEX]
.
@ wiliam: tùy theo thế nào c . làm như cậu thì thiếu m=-1
Last edited by a moderator: