2/ CMR trong mọi tam giác ta đều có:
[TEX]sin(\frac{\pi-A}{4}).sin(\frac{\pi-B}{4}).sin(\frac{\pi-C}{4})[/TEX]\geq [TEX] sin(\frac{A}{2}).sin(\frac{B}{2}). sin(\frac{C}{2}[/TEX]
[TEX]sin(\frac{\pi-A}{4}).sin(\frac{\pi-B}{4}).sin(\frac{\pi-C}{4})[/TEX]
=[TEX]\frac{1}{2}sin(\frac{\pi-C}{4})[cos(\frac{B-A}{4})-\frac{1}{2}sin(\frac{\pi-C}{4})sin(\frac{A+B}{4})[/TEX]
=[TEX]\frac{1}{4}[sin(\frac{A}{2})+sin(\frac{B}{2})+sin(\frac{C}{2})[/TEX]
mà 4[TEX]sin(\frac{A}{2})sin(\frac{B}{2})sin(\frac{C}{2}[/tex] =cosA+cosB+cosC-1
vậy ta cần chứng chứng minh
[TEX]sin(\frac{A}{2})+sin(\frac{B}{2})+sin(\frac{C}{2})[/TEX][TEX]\geq cosA+cosB+cosC-1[/TEX]
ta có [TEX]cosA+cosB\leq 2sin(\frac{C}{2})[/TEX]
\Leftrightarrow2
cos(2A+B)cos(2A−B)\leq2[tex]sin(\frac{C}{2})[/TEX]
\Leftrightarrow2
sin(2C)[cos(2A−B)−1]≤0(*)
BĐT (*) luôn đúng vì: [TEX]\left{\begin{cos(\frac{A-B}{2})\leq1}\\{sin(\frac{C}{2})>0} [/TEX]
tương tự ta có
cosB+cosC≤2sin(2A)
cosA+cosC≤2sin(2B)
cộng vế với vế của 3 bđt trên ta được
[tex] sin(\frac{A}{2})+sin(\frac{B}{2})+sin(\frac{C}{2})[/TEX]\geq cosA+cosB+cosC \geq cosA+cosB+cosC-1
hay
[TEX]sin(\frac{\pi-A}{4}).sin(\frac{\pi-B}{4}).sin(\frac{\pi-C}{4})[/TEX]\geq [TEX] sin(\frac{A}{2}).sin(\frac{B}{2}). sin(\frac{C}{2}[/TEX]
\Rightarrowđpcm