Ta có: [tex](a+b+c)(\frac{1}{a}+\frac{1}{b}+\frac{1}{c})=(1+\frac{a}{b}+\frac{a}{c})+(\frac{b}{a}+1+\frac{b}{c})+(\frac{a}{c}+\frac{c}{b}+1)[/tex]
[tex]=(\frac{a}{b}+\frac{b}{a})+(\frac{b}{c}+\frac{c}{b})+(\frac{a}{c}+\frac{c}{a})+3[/tex]
Mà a,b,c dương nên [tex]\frac{a}{b}+\frac{b}{a}\geq 2[/tex]
[tex]\frac{b}{c}+\frac{c}{b}\geq 2[/tex]
[tex]\frac{a}{c}+\frac{c}{a}\geq 2[/tex]
Suy ra: [tex](a+b+c)(\frac{1}{a}+\frac{1}{b}+\frac{1}{c})=(\frac{a}{b}+\frac{b}{a})+(\frac{b}{c}+\frac{c}{b})+(\frac{a}{c}+\frac{c}{a})+3 \geq 2+2+2+3 = 9 [/tex]
[tex]\Rightarrow \frac{1}{a}+\frac{1}{b}+\frac{1}{c}\geq \frac{9}{a+b+c}[/tex] (đpcm)