R
rua_it
Kéo topic này lênLet a,b,c are positive real numbers.Prove that:
[TEX]\sum \frac {a^3}{b^2 - bc + c^2} \ge \frac {3(ab + bc + ac)}{a + b + c}[/TEX]
Theo Cauchy-Schwarz, ta có: [tex](\sum a^2)^2=(\sum \sqrt{\frac{a^3}{b^2-bc+c^2}}.\sqrt{(b^2-bc+c^2).a})^2 [/tex]
[tex]\leq VT.\sum a.(b^2-bc+c^2) \Rightarrow VT \geq \frac{(a^2+b^2+c^2)^2}{a(b^2+c^2)+b(c^2+a^2)+c(a^2+b^2)-3abc}[/tex]
Mặt khác, ta lại có: [tex]VP =\frac{3(ab+bc+ca)}{a+b+c} \leq \frac{(a+b+c)^2}{a+b+c}=a+b+c[/tex]
Do đó, ta chỉ cần chứng minh [tex]\frac{(a^2+b^2+c^2)^2}{a(b^2+c^2)+b(a^2+c^2)+c(a^2+b^2)-3abc} \geq a+b+c(*)[/tex]
Thật vậy, giả sử [tex]a \geq b \geq c \geq0[/tex]
[tex]\Rightarrow (*) \Leftrightarrow a^4+b^4+c^4+2a^2b^2+2b^2c^2+2c^2a^2 \geq (a+b+c)(a(b^2+c^2)+b(c^2+a^2)+c(a^2+b^2)-3abc)[/tex]
[tex]\Leftrightarrow a^2(a-b)^2+(a+b)(a-c)(a-b)^2+c^2(c-a)(c-b) \geq 0[/tex]
[tex]\Rightarrow (*) [/tex] đúng \Rightarrow dpcm
Last edited by a moderator: