Chắc suất Đại học top - Giữ chỗ ngay!! ĐĂNG BÀI NGAY để cùng trao đổi với các thành viên siêu nhiệt tình & dễ thương trên diễn đàn.
1. Cho hình vuông ABCD, lấy E thuộc BC. AE giao với DC tại F, kẻ DH vuông góc với AF tại H. N và K lần lượt là hình chiếu của H trên AD, CD.
a) CMR: [tex]\frac{1}{AD^2}=\frac{1}{AE^2}+\frac{1}{AF^2}[/tex]
b) Trên nửa mặt phẳng bờ AE chứa D vẽ Ay và Fx sao cho Ay//Fx. Giao điểm của HN và Ay là P, Q là giao điểm của HK và Fx.
CMR: Ba điểm P, D, Q thẳng hàng
c) Gọi G là giao điểm của DE và BF. Chứng minh [tex]AE\perp CG[/tex]
d) T là một điểm bất kì trên AF. I và J thứ tự là hình chiếu của T trên CD, AD. CMR:
[tex]TA.TF=ID.IF+JA.JD[/tex]
Mong các bạn giúp mình với ạ, mình đang cần gấp
a) CMR: [tex]\frac{1}{AD^2}=\frac{1}{AE^2}+\frac{1}{AF^2}[/tex]
b) Trên nửa mặt phẳng bờ AE chứa D vẽ Ay và Fx sao cho Ay//Fx. Giao điểm của HN và Ay là P, Q là giao điểm của HK và Fx.
CMR: Ba điểm P, D, Q thẳng hàng
c) Gọi G là giao điểm của DE và BF. Chứng minh [tex]AE\perp CG[/tex]
d) T là một điểm bất kì trên AF. I và J thứ tự là hình chiếu của T trên CD, AD. CMR:
[tex]TA.TF=ID.IF+JA.JD[/tex]
Mong các bạn giúp mình với ạ, mình đang cần gấp