Áp dụng BĐT Cauchy, ta có:
$a^2 + b^2 \geq 2ab$
Dấu = xảy ra <=> a = b
$b^2 + c^2 \geq 2bc$
Dấu "=" xảy ra <=> b = c
$a^2 + c^2 \geq 2ac$
Dấu "=" xảy ra <=> a = c
Suy ra $2(a^2 + b^2 + c^2 \geq 2(ab + bc + ac)$
<=> $a^2 + b^2 + c^2 \geq ab + bc + ac$
Dấu "=" xảy ra <=> a = b = c
ban co the tham khao
ta co bđt bunhiacopxki
(x1.y1+x2.y2+x3.y3+...+xn.yn)<=(x1^2+x2^2+x3^2+...xn^2)(y1^2+y2^2+y^2+...yn^2)
nên ta duoc
(x.y+y.z+z.x)^2<=(x^2+y^2+z^2)(x^2+y^2+z^2)
(x.y+y.z+z.x)^2<=(x^2+y^2+z^2)^2
xy+yz+zx<=x^2+y^2+z^2
''='' xay ra khi x=y=z
ma theo đề ra a^2+b^2+c^2=ac+ac+bc
vay dau = xay ra vay x=y=z