(cos4x-cos2x)^2 = 5 + sin3x
VT =(1.cos⁡4x+(−1).cos⁡2x)2≤(12+12)(cos2⁡4x+cos2⁡2x)≤4" role="presentation" style="margin: 0px; padding: 0px; border: 0px; font-size: 13.696px; vertical-align: baseline; background: transparent; display: inline; line-height: normal; word-wrap: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; color: rgb(0, 0, 0); font-family: Arial, "Liberation Sans", "DejaVu Sans", sans-serif; position: relative;">=(1.cos4x+(−1).cos2x)2≤(12+12)(cos24x+cos22x)≤4=(1.cos4x+(−1).cos2x)2≤(12+12)(cos24x+cos22x)≤4
Dấu "="" role="presentation" style="margin: 0px; padding: 0px; border: 0px; font-size: 13.696px; vertical-align: baseline; background: transparent; display: inline; line-height: normal; word-wrap: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; color: rgb(0, 0, 0); font-family: Arial, "Liberation Sans", "DejaVu Sans", sans-serif; position: relative;">"=""=" xảy ra ⇔{cos⁡4x=−cos⁡2xcos2⁡4x=cos2⁡2x=1" role="presentation" style="margin: 0px; padding: 0px; border: 0px; font-size: 13.696px; vertical-align: baseline; background: transparent; display: inline; line-height: normal; word-wrap: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; color: rgb(0, 0, 0); font-family: Arial, "Liberation Sans", "DejaVu Sans", sans-serif; position: relative;">⇔{cos4x=−cos2xcos24x=cos22x=1⇔{cos4x=−cos2xcos24x=cos22x=1
VP =5+sin⁡3x≥4" role="presentation" style="margin: 0px; padding: 0px; border: 0px; font-size: 13.696px; vertical-align: baseline; background: transparent; display: inline; line-height: normal; word-wrap: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; color: rgb(0, 0, 0); font-family: Arial, "Liberation Sans", "DejaVu Sans", sans-serif; position: relative;">=5+sin3x≥4=5+sin3x≥4
Dấu "="" role="presentation" style="margin: 0px; padding: 0px; border: 0px; font-size: 13.696px; vertical-align: baseline; background: transparent; display: inline; line-height: normal; word-wrap: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; color: rgb(0, 0, 0); font-family: Arial, "Liberation Sans", "DejaVu Sans", sans-serif; position: relative;">"=""=" xảy ra ⇔sin⁡3x=−1" role="presentation" style="margin: 0px; padding: 0px; border: 0px; font-size: 13.696px; vertical-align: baseline; background: transparent; display: inline; line-height: normal; word-wrap: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; color: rgb(0, 0, 0); font-family: Arial, "Liberation Sans", "DejaVu Sans", sans-serif; position: relative;">⇔sin3x=−1⇔sin3x=−1
Do đó VT=VP ⇔{cos⁡4x=−cos⁡2x=±1sin⁡3x=−1" role="presentation" style="margin: 0px; padding: 0px; border: 0px; font-size: 13.696px; vertical-align: baseline; background: transparent; display: inline; line-height: normal; word-wrap: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; color: rgb(0, 0, 0); font-family: Arial, "Liberation Sans", "DejaVu Sans", sans-serif; position: relative;">⇔{cos4x=−cos2x=±1sin3x=−1⇔{cos4x=−cos2x=±1sin3x=−1
⇔[{cos⁡4x=1sin⁡3x=−1cos⁡2x=−1{cos⁡4x=−1sin⁡3x=−1cos⁡2x=1⇔[{x=kπ2x=−π6+k2π3x=π2+kπ{x=π4+kπ2x=−π6+k2π3x=kπ⇔x=k.π,k∈Z(VN)" role="presentation" style="margin: 0px; padding: 0px; border: 0px; font-size: 13.696px; vertical-align: baseline; background: transparent; display: inline; line-height: normal; word-wrap: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; color: rgb(0, 0, 0); font-family: Arial, "Liberation Sans", "DejaVu Sans", sans-serif; position: relative;">⇔⎡⎣⎢⎢⎢⎢⎢⎢⎢⎧⎩⎨cos4x=1sin3x=−1cos2x=−1⎧⎩⎨cos4x=−1sin3x=−1cos2x=1⇔⎡⎣⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎧⎩⎨⎪⎪⎪⎪x=kπ2x=−π6+k2π3x=π2+kπ⎧⎩⎨⎪⎪x=π4+kπ2x=−π6+k2π3x=kπ⇔x=k.π,k∈Z(VN)⇔[{cos4x=1sin3x=−1cos2x=−1{cos4x=−1sin3x=−1cos2x=1⇔[{x=kπ2x=−π6+k2π3x=π2+kπ{x=π4+kπ2x=−π6+k2π3x=kπ⇔x=k.π,k∈Z(VN)
⇔x=π2+kπ,k∈Z" role="presentation" style="margin: 0px; padding: 0px; border: 0px; font-size: 13.696px; vertical-align: baseline; background: transparent; display: inline; line-height: normal; word-wrap: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; color: rgb(0, 0, 0); font-family: Arial, "Liberation Sans", "DejaVu Sans", sans-serif; position: relative;">⇔x=π2+kπ,k∈Z